talk-data.com talk-data.com

Topic

Analytics

data_analysis insights metrics

528

tagged

Activity Trend

398 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Science Books ×
Healthcare Data Analytics

Supplying a comprehensive overview of healthcare analytics research, Healthcare Data Analytics provides an understanding of the analytical techniques currently available to solve healthcare problems. The book details novel techniques for acquiring, handling, retrieving, and making best use of healthcare data. It analyzes recent developments in healthcare computing and discusses emerging technologies that can help improve the health and well-being of patients. Written by prominent researchers and experts working in the healthcare domain, it sheds light on the computational challenges in the field of medical informatics.

Mastering Predictive Analytics with R

Dive into the realm of predictive analytics with this R-focused guide. Whether you're building your first model or refining complex analytics strategies, this book equips you with fundamental techniques and in-depth understanding of predictive modeling using R. What this Book will help me do Master the end-to-end predictive modeling process. Classify and select suitable predictive models for specific use cases. Understand the mechanics and assumptions of various predictive models. Evaluate predictive model performance with appropriate metrics. Enhance your R programming skills for analytical tasks. Author(s) The authors of this book combine strong technical expertise in data science and predictive analytics with extensive hands-on experience in applying them to real-world challenges. They excel at distilling complex topics into approachable, actionable steps for readers at varying levels of familiarity with R and data analysis. Their commitment to empowering learners defines their work. Who is it for? This book is perfect for budding data scientists and quantitative analysts with basic R knowledge who aspire to master predictive analytics. Even experienced professionals will find valuable model-specific insights. If you're familiar with basic statistics and eager to bridge the gap to robust machine learning applications, this book is for you.

The Last Mile of Analytics: Making the Leap from Platforms to Tools

Here's the net takeaway: Businesses want insights from data they can translate into meaningful actions and real results. Software vendors are beginning to deliver a new generation of advanced analytics packages that address business issues directly. In this O'Reilly report, Mike Barlow reveals how this new user-friendly software is helping businesses go beyond data analysis and straight to decision-making—without requiring data science expertise or truckloads of cash. How has advanced analytics progressed from lab project to commercial product so quickly? Through interviews with data analysts, you'll understand the role that machine learning plays in specialized analytics packages, and how this software alone can make decisions based on what's likely to happen next. When you have these capabilities, you’ve reached "the last mile of analytics."

Mastering Pandas for Finance

"Mastering Pandas for Finance" takes a deep dive into applying Python and the pandas library to solve real-world financial data analysis problems. With a focus on financial modeling, backtesting trading strategies, and analyzing large datasets, this book equips you with the skills to leverage pandas effectively. What this Book will help me do Utilize pandas DataFrame for efficient financial data handling and manipulation. Develop robust time-series models and perform statistical analysis on financial data. Backtest algorithmic trading strategies including momentum and mean reversion. Price complex financial options and calculate Value at Risk for portfolio management. Optimize portfolio allocation and model financial performance using industry techniques. Author(s) Michael Heydt is an experienced software engineer and data scientist with a strong background in quantitative finance. He specializes in using Python for data analysis and has spent years teaching and writing about technical subjects. His detailed yet approachable writing style makes complex topics accessible to all. Who is it for? "Mastering Pandas for Finance" is perfect for finance professionals seeking to integrate Python into their workflows, data analysts exploring quantitative finance applications, and programmers aiming to specialize in financial analytics. Some baseline Python and pandas knowledge is recommended, but the book is structured to guide you effectively through advanced concepts too.

Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python

Now a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. , Building on Miller's pioneering program, thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Marketing Data Science Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance. Marketing Data Science

Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know

Features basic statistical concepts as a tool for thinking critically, wading through large quantities of information, and answering practical, everyday questions Written in an engaging and inviting manner, Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know presents the more subjective side of statistics—the art of data analytics. Each chapter explores a different question using fun, common sense examples that illustrate the concepts, methods, and applications of statistical techniques. Without going into the specifics of theorems, propositions, or formulas, the book effectively demonstrates statistics as a useful problem-solving tool. In addition, the author demonstrates how statistics is a tool for thinking critically, wading through large volumes of information, and answering life's important questions. Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know also features: Plentiful examples throughout aimed to strengthen readers' understanding of the statistical concepts and methods A step-by-step approach to elementary statistical topics such as sampling, hypothesis tests, outlier detection, normality tests, robust statistics, and multiple regression A case study in each chapter that illustrates the use of the presented techniques Highlights of well-known shortcomings that can lead to false conclusions An introduction to advanced techniques such as validation and bootstrapping Featuring examples that are engaging and non-application specific, the book appeals to a broad audience of students and professionals alike, specifically students of undergraduate statistics, managers, medical professionals, and anyone who has to make decisions based on raw data or compiled results.

Google Analytics Integrations

Get a complete view of your customers and make your marketing analysis more meaningful How well do you really know your customers? Find out with the help of expert author Daniel Waisberg and Google Analytics Integrations. This unique guide takes you well beyond the basics of using Google Analytics to track metrics, showing you how to transform this simple data collection tool into a powerful, central marketing analysis platform for your organization. You'll learn how Google AdWords, AdSense, CRMs, and other data sources can be used together to deliver actionable insights about your customers and their behavior. Explains proven techniques and best practices for collecting clean and accurate information from the start Shows you how to import your organization's marketing and customer data into Google Analytics Illustrates the importance of taking a holistic view of your customers and how this knowledge can transform your business Provides step-by-step guidance on using the latest analytical tools and services to gain a complete understanding of your customers, their needs, and what motivates them to take action Google Analytics Integration is your in-depth guide to improving your data integration, behavioral analysis, and ultimately, your bottom line.

Data Mining and Predictive Analytics, 2nd Edition

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified "white box" approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Knowledge Discovery Process and Methods to Enhance Organizational Performance

Although the terms "data mining" and "knowledge discovery and data mining" (KDDM) are sometimes used interchangeably, data mining is actually just one step in the KDDM process. Data mining is the process of extracting useful information from data, while KDDM is the coordinated process of understanding the business and mining the data in order to identify previously unknown patterns. Knowledge Discovery Process and Methods to Enhance Organizational Performance explains the knowledge discovery and data mining (KDDM) process in a manner that makes it easy for readers to implement. Sharing the insights of international KDDM experts, it details powerful strategies, models, and techniques for managing the full cycle of knowledge discovery projects. The book supplies a process-centric view of how to implement successful data mining projects through the use of the KDDM process. It discusses the implications of data mining including security, privacy, ethical and legal considerations. Provides an introduction to KDDM, including the various models adopted in academia and industry Details critical success factors for KDDM projects as well as the impact of poor quality data or inaccessibility to data on KDDM projects Proposes the use of hybrid approaches that couple data mining with other analytic techniques (e.g., data envelopment analysis, cluster analysis, and neural networks) to derive greater value and utility Demonstrates the applicability of the KDDM process beyond analytics Shares experiences of implementing and applying various stages of the KDDM process in organizations The book includes case study examples of KDDM applications in business and government. After reading this book, you will understand the critical success factors required to develop robust data mining objectives that are in alignment with your organization’s strategic business objectives.

Mastering R for Quantitative Finance

Dive deeply into the quantitative finance domain using R with 'Mastering R for Quantitative Finance.' Through this book, you'll explore advanced R programming techniques tailored to financial modeling, risk assessment, and trading strategy optimization. This comprehensive guide aims to equip you with the tools to build practical quantitative finance solutions. What this Book will help me do Analyze detailed financial data using R and quantitative techniques. Develop predictive models for time series and risk management. Implement advanced trading strategies tailored to current market conditions. Master simulation techniques for scenarios without analytical solutions. Evaluate portfolio risks and potential returns with advanced methods. Author(s) None Gabler is a seasoned expert in quantitative finance and R programming, bringing years of practical experience to this book. Her approach combines theoretical depth with practical examples to ensure readers can apply the learned concepts in real-world financial contexts. Her passion for teaching and clear writing style make complex topics accessible to both practitioners and learners. Who is it for? This book is for financial professionals and data scientists seeking to delve into quantitative finance using R. Ideal readers are familiar with the basics of economics and statistics and are looking to apply advanced analytics in finance. If you are aiming to refine your modeling skills or develop precise strategies, this book is tailored for you. It's perfect for those eager to bridge the gap between theory and practical application.

TIBCO Spotfire: A Comprehensive Primer

TIBCO Spotfire: A Comprehensive Primer is the go-to guide for mastering TIBCO Spotfire, a leading data visualization and analytics tool. Whether you are new to Spotfire or data visualization in general, this book will provide you with a solid foundation to create impactful and actionable visual insights. What this Book will help me do Understand the fundamentals of TIBCO Spotfire and its application in data analytics. Learn how to design compelling visualizations and dashboards that convey meaningful insights. Master advanced data transformations and analysis techniques in TIBCO Spotfire. Integrate Spotfire with external data sources and scripting languages, enhancing its functionality. Optimize Spotfire's performance and usability for enterprise-level implementations. Author(s) None Phillips, an experienced analytics professional and educator, specializes in creating accessible learning materials for data science tools. With a decade of experience in the field, None has helped many organizations unlock their data potential through tools like TIBCO Spotfire. Their approach emphasizes practical understanding, making complex concepts approachable for learners of all levels. Who is it for? The book is perfect for business analysts, data scientists, and other professionals involved in data-driven decision making who want to master TIBCO Spotfire. It's designed for beginners without prior exposure to data visualization or TIBCO Spotfire, offering an accessible entry into the field. Individuals aiming to gain hands-on experience and create enterprise-grade solutions will find this book invaluable. Additionally, it serves as a reference for experienced Spotfire users looking to refine their skills.

Practical Business Analytics Using SAS: A Hands-on Guide

Practical Business Analytics Using SAS: A Hands-on Guide shows SAS users and businesspeople how to analyze data effectively in real-life business scenarios. The book begins with an introduction to analytics, analytical tools, and SAS programming. The authors—both SAS, statistics, analytics, and big data experts—first show how SAS is used in business, and then how to get started programming in SAS by importing data and learning how to manipulate it. Besides illustrating SAS basic functions, you will see how each function can be used to get the information you need to improve business performance. Each chapter offers hands-on exercises drawn from real business situations. The book then provides an overview of statistics, as well as instruction on exploring data, preparing it for analysis, and testing hypotheses. You will learn how to use SAS to perform analytics and model using both basic and advanced techniques like multiple regression, logistic regression, and time series analysis, among other topics. The book concludes with a chapter on analyzing big data. Illustrations from banking and other industries make the principles and methods come to life. Readers will find just enough theory to understand the practical examples and case studies, which cover all industries. Written for a corporate IT and programming audience that wants to upgrade skills or enter the analytics field, this book includes: More than 200 examples and exercises, including code and datasets for practice. Relevant examples for all industries. Case studies that show how to use SAS analytics to identify opportunities, solve complicated problems, and chart a course. Practical Business Analytics Using SAS: A Hands-on Guide gives you the tools you need to gain insight into the data at your fingertips, predict business conditions for better planning, and make excellent decisions. Whether you are in retail, finance, healthcare, manufacturing, government, or any other industry, this book will help your organization increase revenue, drive down costs, improve marketing, and satisfy customers better than ever before.

Customer Analytics For Dummies

The easy way to grasp customer analytics Ensuring your customers are having positive experiences with your company at all levels, including initial brand awareness and loyalty, is crucial to the success of your business. Customer Analytics For Dummies shows you how to measure each stage of the customer journey and use the right analytics to understand customer behavior and make key business decisions. Customer Analytics For Dummies gets you up to speed on what you should be testing. You'll also find current information on how to leverage A/B testing, social media's role in the post-purchasing analytics, usability metrics, prediction and statistics, and much more to effectively manage the customer experience. Written by a highly visible expert in the area of customer analytics, this guide will have you up and running on putting customer analytics into practice at your own business in no time. Shows you what to measure, how to measure, and ways to interpret the data Provides real-world customer analytics examples from companies such as Wikipedia, PayPal, and Walmart Explains how to use customer analytics to make smarter business decisions that generate more loyal customers Offers easy-to-digest information on understanding each stage of the customer journey Whether you're part of a Customer Engagement team or a product, marketing, or design professional looking to get a leg up, Customer Analytics For Dummies has you covered.

Computer Science Illuminated, 6th Edition

Each new print copy includes Navigate 2 Advantage Access that unlocks a comprehensive and interactive eBook, student practice activities and assessments, a full suite of instructor resources, and learning analytics reporting tools.

Fully revised and updated, the Sixth Edition of the best-selling text Computer Science Illuminated retains the accessibility and in-depth coverage of previous editions, while incorporating all-new material on cutting-edge issues in computer science. Authored by the award-winning Nell Dale and John Lewis, Computer Science Illuminated’s unique and innovative layered approach moves through the levels of computing from an organized, language-neutral perspective.

Designed for the introductory computing and computer science course, this student-friendly Sixth Edition provides students with a solid foundation for further study, and offers non-majors a complete introduction to computing.

Key Features of the Sixth Edition include:

Access to Navigate 2 online learning materials including a comprehensive and interactive eBook, student practice activities and assessments, learning analytics reporting tools, and more
Completely revised sections on HTML and CSS
Updates regarding Top Level Domains, Social Networks, and Google Analytics
All-new section on Internet management, including ICANN control and net neutrality 
New design, including fully revised figures and tables
New and updated Did You Know callouts are included in the chapter margins
New and revised Ethical Issues and Biographies throughout emphasize the history and breadth of computing
Available in our customizable PUBLISH platform

A collection of programming language chapters are available as low-cost bundling options. Available chapters include: Java, C++, Python, Alice, SQL, VB.NET, RUBY, Perl, Pascal, and JavaScript.

With Navigate 2, technology and content combine to expand the reach of your classroom. Whether you teach an online, hybrid, or traditional classroom-based course, Navigate 2 delivers unbeatable value. Experience Navigate 2 today at www.jblnavigate.com/2

Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available at www.wiley.com/go/9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Introductory Statistics and Analytics: A Resampling Perspective

Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrap A uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on applications of statistical concepts developed via resampling, with a background discussion of mathematical theory. This feature stresses statistical literacy and understanding, which demonstrates the fundamental basis for statistical inference and demystifies traditional formulas. The book begins with illustrations that have the essential statistical topics interwoven throughout before moving on to demonstrate the proper design of studies. Meeting all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) requirements for an introductory statistics course, Introductory Statistics and Analytics: A Resampling Perspective also includes: Over 300 "Try It Yourself" exercises and intermittent practice questions, which challenge readers at multiple levels to investigate and explore key statistical concepts Numerous interactive links designed to provide solutions to exercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing field of data science Multiple discussions of various software systems, such as Microsoft Office Excel®, StatCrunch, and R, to develop and analyze data Areas of concern and/or contrasting points-of-view indicated through the use of "Caution" icons Introductory Statistics and Analytics: A Resampling Perspective is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics.

R Recipes: A Problem-Solution Approach

R Recipes is your handy problem-solution reference for learning and using the popular R programming language for statistics and other numerical analysis. Packed with hundreds of code and visual recipes, this book helps you to quickly learn the fundamentals and explore the frontiers of programming, analyzing and using R. R Recipes provides textual and visual recipes for easy and productive templates for use and re-use in your day-to-day R programming and data analysis practice. Whether you're in finance, cloud computing, big or small data analytics, or other applied computational and data science - R Recipes should be a staple for your code reference library.

Web and Network Data Science: Modeling Techniques in Predictive Analytics

Master modern web and network data modeling: both theory and applications. In a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Web and Network Data Science, Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

Big Data and Health Analytics

Data availability is surpassing existing paradigms for governing, managing, analyzing, and interpreting health data. Big Data and Health Analytics provides frameworks, use cases, and examples that illustrate the role of big data and analytics in modern health care, including how public health information can inform health delivery. Written for health care professionals and executives, this is not a technical book on the use of statistics and machine-learning algorithms for extracting knowledge out of data, nor a book on the intricacies of database design. Instead, this book presents the current thinking of academic and industry researchers and leaders from around the world. Using non-technical language, this book is accessible to health care professionals who might not have an IT and analytics background. It includes case studies that illustrate the business processes underlying the use of big data and health analytics to improve health care delivery. Highlighting lessons learned from the case studies, the book supplies readers with the foundation required for further specialized study in health analytics and data management. Coverage includes community health information, information visualization which offers interactive environments and analytic processes that support exploration of EHR data, the governance structure required to enable data analytics and use, federal regulations and the constraints they place on analytics, and information security. Links to websites, videos, articles, and other online content that expand and support the primary learning objectives for each major section of the book are also included to help you develop the skills you will need to achieve quality improvements in health care delivery through the effective use of data and analytics.

Even You Can Learn Statistics and Analytics: An Easy to Understand Guide to Statistics and Analytics, Third Edition

Related Content Even You Can Learn Statistics, Fourth Edition, is now available with new and expanded content. Thought you couldn’t learn statistics? You can – and you will! Even You Can Learn Statistics and Analytics, Third Edition is the practical, up-to-date introduction to statistics – for everyone! Now fully updated for "big data" analytics and the newest applications, it'll teach you all the statistical techniques you’ll need for finance, marketing, quality, science, social science, and more – one easy step at a time. Simple jargon-free explanations help you understand every technique, and extensive practical examples and worked problems give you all the hands-on practice you'll need. This edition contains more practical examples than ever – all updated for the newest versions of Microsoft Excel. You'll find downloadable practice files, templates, data sets, and sample models – including complete solutions you can put right to work! Learn how to do all this, and more: Apply statistical techniques to analyze huge data sets and transform them into valuable knowledge Construct and interpret statistical charts and tables with Excel or OpenOffice.org Calc 3 Work with mean, median, mode, standard deviation, Z scores, skewness, and other descriptive statistics Use probability and probability distributions Work with sampling distributions and confidence intervals Test hypotheses with Z, t, chi-square, ANOVA, and other techniques Perform powerful regression analysis and modeling Use multiple regression to develop models that contain several independent variables Master specific statistical techniques for quality and Six Sigma programs Hate math? No sweat. You’ll be amazed at how little you need. Like math? Optional "Equation Blackboard" sections reveal the mathematical foundations of statistics right before your eyes. If you need to understand, evaluate, or use statistics in business, academia, or anywhere else, this is the book you've been searching for!