Understand how to use R and R Studio to analyse HR data and deliver insights that drive workforce and business performance.
Topic
4552
tagged
Understand how to use R and R Studio to analyse HR data and deliver insights that drive workforce and business performance.
Help us become the #1 Data Podcast by leaving a rating & review! We are 67 reviews away! Find out which tools are most in demand, which are easiest to learn, and the best order to learn them. Learn about the Data Learning Ladder and how to quickly get started in the data industry. 💌 Join 30k+ aspiring data analysts & get my tips in your inbox weekly 👉 https://www.datacareerjumpstart.com/newsletter 🆘 Feeling stuck in your data journey? Come to my next free "How to Land Your First Data Job" training 👉 https://www.datacareerjumpstart.com/training 👩💻 Want to land a data job in less than 90 days? 👉 https://www.datacareerjumpstart.com/daa 👔 Ace The Interview with Confidence 👉 https://www.datacareerjumpstart.com//interviewsimulator ⌚ TIMESTAMPS 02:23 The Big Six Data Skills 05:55 The Data Learning Ladder 🔗 CONNECT WITH AVERY 🎥 YouTube Channel 🤝 LinkedIn 📸 Instagram 🎵 TikTok 💻 Website Mentioned in this episode: Join the last cohort of 2025! The LAST cohort of The Data Analytics Accelerator for 2025 kicks off on Monday, December 8th and enrollment is officially open!
To celebrate the end of the year, we’re running a special End-of-Year Sale, where you’ll get: ✅ A discount on your enrollment 🎁 6 bonus gifts, including job listings, interview prep, AI tools + more
If your goal is to land a data job in 2026, this is your chance to get ahead of the competition and start strong.
👉 Join the December Cohort & Claim Your Bonuses: https://DataCareerJumpstart.com/daa https://www.datacareerjumpstart.com/daa
Show Notes The Data Product Management In Action podcast, brought to you by Soda and executive producer Scott Hirleman, is a platform for data product management practitioners to share insights and experiences. In Season 01, Episode 18, our host Frannie Helforoush is back again interviewing Katy Pusch about her extensive experience in data product management, particularly with decision-support data products. Katy shares her insights on incorporating machine learning and analytics to empower stakeholders in making informed decisions. They both explore team structure, the challenges encountered in product development, and the critical importance of validating products with users to ensure their effectiveness. About our host Frannie Helforoush: Frannie's journey began as a software engineer and evolved into a strategic product manager. Now, as a data product manager, she leverages her expertise in both fields to create impactful solutions. Frannie thrives on making data accessible and actionable, driving product innovation, and ensuring product thinking is integral to data management. Connect with Frannie on LinkedIn. About our guest Katy Pusch: Katy brings more than a decade of experience in product management and market strategy, driving market change and adoption of innovative technology solutions. She has successfully built and launched data products, IoT solutions, and SaaS platforms in multiple industries such as healthcare, education, and real estate. She is currently serving as a Sr.Product Line Director at Trintech. With a background in research, she brings data science and market intelligence to every aspect of her work. Katy is passionate about data privacy and tech-ethics, and is pursuing an MS in History and Sociology of Technology and Science at GeorgiaTech. When she’s not working with her team to deliver top solutions, Katy enjoys spending time with her husband, building Lego models, and pursuing a private pilot license. Connect with Katy on LinkedIn. All views and opinions expressed are those of the individuals and do not necessarily reflect their employers or anyone else. Join the conversation on LinkedIn. Apply to be a guest or nominate someone that you know. Do you love what you're listening to? Please rate and review the podcast, and share it with fellow practitioners you know. Your support helps us reach more listeners and continue providing valuable insights!
In this episode, I dive into the world of AI leadership with Andreas Welsh, a renowned AI expert and author of 'The AI Leadership Handbook'. We explore Andreas's impressive career at SAP, his new venture as an AI advisor and expert, his impactful journey on LinkedIn, and his insights into successful AI implementation. Topics we cover: Discover Andreas’s background and his remarkable 23-year career at SAP. He shares pivotal moments and lessons learned from working at one of the world’s largest tech companies.Learn what motivated Andreas to start sharing his expertise on LinkedIn in 2021, and the significant impact it has had on his professional life.Uncover the inspiration behind Andreas's book, The AI Leadership Handbook, and his mission to guide organisations in harnessing AI effectively.Andreas discusses the critical elements that must be in place for AI projects to thrive and avoid the common pitfalls that lead to failure.Understand the need for the emerging Chief AI Officer role, how it differs from a Chief Data & Analytics Officer, and the importance of giving it a strong mandate within organisations.Explore the concept of multiplier communities and their role in amplifying AI capabilities across organisations.Andreas shares his vision for AI over the next 5-10 years, including opportunities, potential risks, and disruptions.Andreas leaves listeners with a powerful lesson from 'The AI Leadership Handbook' that every leader should consider when integrating AI into their strategy.This episode is packed with valuable insights for anyone interested in AI leadership and innovation. Whether you're an executive, a tech enthusiast, or someone curious about the future of AI, Andreas Welsh offers guidance and inspiration to navigate this transformative field. Connect with Andreas Welsh on LinkedIn: https://www.linkedin.com/in/andreasmwelsch/ Leaders of Analytics Newsletter: https://www.leadersofanalytics.com/newsletter Subscribe to Leaders of Analytics via your favourite podcast app: Apple Podcasts Google Podcasts Spotify
In today’s episode, I’m joined by John Felushko, a product manager at LabStats who impressed me after we recently had a 1x1 call together. John and his team have developed a successful product that helps universities track and optimize their software and hardware usage so schools make smart investments. However, John also shares how culture and value are very tied together—and why their product isn’t a fit for every school, and every country. John shares how important customer relationships are , how his team designs great analytics user experiences, how they do user research, and what he learned making high-end winter sports products that’s relevant to leading a SAAS analytics product. Combined with John’s background in history and the political economy of finance, John paints some very colorful stories about what they’re getting right—and how they’ve course corrected over the years at LabStats.
Highlights/ Skip to:
(0:46) What is the LabStats product (2:59) Orienting analytics around customer value instead of IT/data (5:51) "Producer of Persistently Profitable Product Process" (11:22) How they make product adjustments based on previous failures (15:55) Why a lack of cultural understanding caused LabStats to fail internationally (18:43) Quantifying value beyond dollars and cents (25:23) How John is able to work so closely with his customers without barriers (30:24) Who makes up the LabStats product research team (35:04) How strong customer relationships help inform the UX design process (38:29) Getting senior management to accept that you can't regularly and accurately predict when you’ll be feature-complete and ship (43:51) Where John learned his skills as a successful product manager (47:20) Where you can go to cultivate the non-technical skills to help you become a better SAAS analytics product leader (51:00) What advice would John Felushko have given himself 10 years ago? (56:19) Where you can find more from John Felushko
Quotes from Today’s Episode “The product process is [essentially] really nothing more than the scientific method applied to business. Every product is an experiment - it has a hypothesis about a problem it solves. At LabStats [we have a process] where we go out and clearly articulate the problem. We clearly identify who the customers are, and who are [people at other colleges] having that problem. Incrementally and as inexpensively as possible, [we] test our solutions against those specific customers. The success rate [of testing solutions by cross-referencing with other customers] has been extremely high.” - John Felushko (6:46) “One of the failures I see in Americans is that we don’t realize how much culture matters. Americans have this bias to believe that whatever is valuable in my culture is valuable in other cultures. Value is entirely culturally determined and subjective. Value isn’t a number on a spreadsheet. [LabStats positioned our producty] as something that helps you save money and be financially efficient. In French government culture, financial efficiency is not a top priority. Spending government money on things like education is seen as a positive good. The more money you can spend on it, the better. So, the whole message of financial efficiency wasn’t going to work in that market.” - John Felushko (16:35) “What I’m really selling with data products is confidence. I’m selling assurance. I’m selling an emotion. Before I was a product manager, I spent about ten years in outdoor retail, selling backpacks and boots. What I learned from that is you’re always selling emotion, at every level. If you can articulate the ROI, the real value is that the buyer has confidence they bought the right thing.” - John Felushko (20:29) “[LabStats] has three massive, multi-million dollar horror stories in our past where we [spent] millions of dollars in development work for no results. No ROI. Horror stories are what shape people’s values more than anything else. Avoiding negative outcomes is what people avoid more than anything else. [It’s important to] tell those stories and perpetuate those [lessons] through the culture of your organization. These are the times we screwed up, and this is what we learned from it—do you want to screw up like that again because we learned not to do that.” - John Felushko (38:45) “There’s an old description of a product manager, like, ‘Oh, they come across as the smartest person in the room.’ Well, how do you become that person? Expand your view, and expand the amount of information you consume as widely as possible. That’s so important to UX design and thinking about what went wrong. Why are some customers super happy and some customers not? What is the difference between those two groups of people? Is it culture? Is it time? Is it mental ability? Is it the size of the screen they’re looking at my product on? What variables can I define and rule out, and what data sources do I have to answer all those questions? It’s just the normal product manager thing—constant curiosity.” -John Felushko (48:04)
To data analyst, or to data science? To individually contribute, or to manage the individual contributions of others? To mid-career pivot into analytics, or to… oh, hell yes! That last one isn't really a choice, is it? At least, not for listeners who are drawn to this podcast. And this episode is a show that can be directly attributed to listeners. As we gathered feedback in our recent listener survey, we asked for topic suggestions, and a neat little set of those suggestions were all centered around career development. And thus, a show was born! All five co-hosts—Julie, Michael, Moe, Tim, and Val—hopped on the mic to collaborate on some answers in this episode. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.
Dive into efficient data handling with 'In-Memory Analytics with Apache Arrow.' This book explores Apache Arrow, a powerful open-source project that revolutionizes how tabular and hierarchical data are processed. You'll learn to streamline data pipelines, accelerate analysis, and utilize high-performance tools for data exchange. What this Book will help me do Understand and utilize the Apache Arrow in-memory data format for your data analysis needs. Implement efficient and high-speed data pipelines using Arrow subprojects like Flight SQL and Acero. Enhance integration and performance in analysis workflows by using tools like Parquet and Snowflake with Arrow. Master chaining and reusing computations across languages and environments with Arrow's cross-language support. Apply in real-world scenarios by integrating Apache Arrow with analytics systems like Dremio and DuckDB. Author(s) Matthew Topol, the author of this book, brings 15 years of technical expertise in the realm of data processing and analysis. Having worked across various environments and languages, Matthew offers insights into optimizing workflows using Apache Arrow. His approachable writing style ensures that complex topics are comprehensible. Who is it for? This book is tailored for developers, data engineers, and data scientists eager to enhance their analytic toolset. Whether you're a beginner or have experience in data analysis, you'll find the concepts actionable and transformative. If you are curious about improving the performance and capabilities of your analytic pipelines or tools, this book is for you.
Is this the best economy ever? Given the big revisions to GDP and the steady stream of other stellar economic data, the Inside Economics team makes the case that it is. Moderating inflation, full employment, stronger savings rates and steady corporate profits point to an economy that is stronger than consumer confidence suggests. The team also discusses the latest economic proposals from the presidential campaign and a recent opinion piece comparing Mark’s forecasts to those of Punxsutawney Phil. Editor’s note: Punxsutawney Phil has also been unfairly mischaracterized by the media. https://www.axios.com/2023/01/28/groundhog-day-punxsutawney-phil-spring-winter Guest: Matt Colyar - Assistant Director, Moody's Analytics Hosts: Mark Zandi – Chief Economist, Moody’s Analytics, Cris deRitis – Deputy Chief Economist, Moody’s Analytics, and Marisa DiNatale – Senior Director - Head of Global Forecasting, Moody’s Analytics Follow Mark Zandi on 'X' @MarkZandi, Cris deRitis on LinkedIn, and Marisa DiNatale on LinkedIn
Questions or Comments, please email us at [email protected]. We would love to hear from you. To stay informed and follow the insights of Moody's Analytics economists, visit Economic View.
If you are working in or trying to break into data and want to learn how to fast-track your career, this one is for you! In this episode, Jess Ramos (180k+ followers on LinkedIn!) shares her best tips and practical advice to help take your career to the next level. What You'll Learn: How specializing and building niche skills can lead to big opportunities The importance of a personal brand if you want to accelerate your career Jess' top tips for those looking to break into data and move up quickly Register for free to be part of the next live session: https://bit.ly/3XB3A8b About our guest: Jess Ramos is the founder of Big Data Energy, a Senior Data Analyst at Crunchbase, a LinkedIn Learning Instructor, and a content creator in the data space. She loves to empower people to grow their careers in data while breaking industry stereotypes! Jess' Newsletter Follow Jess on LinkedIn
Follow us on Socials: LinkedIn YouTube Instagram (Mavens of Data) Instagram (Maven Analytics) TikTok Facebook Medium X/Twitter
This book covers modern data engineering functions and important Python libraries, to help you develop state-of-the-art ML pipelines and integration code. The book begins by explaining data analytics and transformation, delving into the Pandas library, its capabilities, and nuances. It then explores emerging libraries such as Polars and CuDF, providing insights into GPU-based computing and cutting-edge data manipulation techniques. The text discusses the importance of data validation in engineering processes, introducing tools such as Great Expectations and Pandera to ensure data quality and reliability. The book delves into API design and development, with a specific focus on leveraging the power of FastAPI. It covers authentication, authorization, and real-world applications, enabling you to construct efficient and secure APIs using FastAPI. Also explored is concurrency in data engineering, examining Dask's capabilities from basic setup to crafting advanced machine learning pipelines. The book includes development and delivery of data engineering pipelines using leading cloud platforms such as AWS, Google Cloud, and Microsoft Azure. The concluding chapters concentrate on real-time and streaming data engineering pipelines, emphasizing Apache Kafka and workflow orchestration in data engineering. Workflow tools such as Airflow and Prefect are introduced to seamlessly manage and automate complex data workflows. What sets this book apart is its blend of theoretical knowledge and practical application, a structured path from basic to advanced concepts, and insights into using state-of-the-art tools. With this book, you gain access to cutting-edge techniques and insights that are reshaping the industry. This book is not just an educational tool. It is a career catalyst, and an investment in your future as a data engineering expert, poised to meet the challenges of today's data-driven world. What You Will Learn Elevate your data wrangling jobs by utilizing the power of both CPU and GPU computing, and learn to process data using Pandas 2.0, Polars, and CuDF at unprecedented speeds Design data validation pipelines, construct efficient data service APIs, develop real-time streaming pipelines and master the art of workflow orchestration to streamline your engineering projects Leverage concurrent programming to develop machine learning pipelines and get hands-on experience in development and deployment of machine learning pipelines across AWS, GCP, and Azure Who This Book Is For Data analysts, data engineers, data scientists, machine learning engineers, and MLOps specialists
Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more. Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning. What You'll Learn Work with vectors and matrices using NumPy Review Symbolic computing with SymPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Understand statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis.
The MedTech industry is undergoing a revolutionary transformation with continuous innovations promising greater precision, efficiency, and accessibility. In particular oncology, a branch of medicine that focuses on cancer, will benefit immensely from these new technologies, which may enable clinicians to detect cancer earlier and increase chances of survival. Detecting cancerous cells in microscopic photography of cells (Whole Slide Images, aka WSIs) is usually done with segmentation algorithms, which neural networks (NNs) are very good at. While using ML and NNs for image segmentation is a fairly standard task with established solutions, doing it on WSIs is a different kettle of fish. Most training pipelines and systems have been designed for analytics, meaning huge columns of small individual datums. In the case of WSIs, a single image is so huge that its file can be up to dozens of gigabytes. To allow innovation in medical imaging with AI, we need efficient and affordable ways to store and process these WSIs at scale.
Every organization today is exploring generative AI to drive value and push their business forward. But a common pitfall is that AI strategies often don’t align with business objectives, leading companies to chase flashy tools rather than focusing on what truly matters. How can you avoid these traps and ensure your AI efforts are not only innovative but also aligned with real business value? Leon Gordon, is a leader in data analytics and AI. A current Microsoft Data Platform MVP based in the UK, founder of Onyx Data. During the last decade, he has helped organizations improve their business performance, use data more intelligently, and understand the implications of new technologies such as artificial intelligence and big data. Leon is an Executive Contributor to Brainz Magazine, a Thought Leader in Data Science for the Global AI Hub, chair for the Microsoft Power BI – UK community group and the DataDNA data visualization community as well as an international speaker and advisor. In the episode, Adel and Leon explore aligning AI with business strategy, building AI use-cases, enterprise AI-agents, AI and data governance, data-driven decision making, key skills for cross-functional teams, AI for automation and augmentation, privacy and AI and much more. Links Mentioned in the Show: Onyx DataConnect with LeonLeon’s Linkedin Course - How to Build and Execute a Successful Data StrategySkill Track: AI Business FundamentalsRelated Episode: Generative AI in the Enterprise with Steve Holden, Senior Vice President and Head of Single-Family Analytics at Fannie MaeRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Understanding the effectiveness of various marketing channels is crucial to maximise the return on investment (ROI). However, the limitation of third-party cookies and an ever-growing focus on privacy make it difficult to rely on basic analytics. This talk discusses a pioneering project where a Bayesian model was employed to assess the marketing media mix effectiveness of WeRoad, the fastest-growing Italian tour operator.
The Bayesian approach allows for the incorporation of prior knowledge, seamlessly updating it with new data to provide robust, actionable insights. This project leveraged a Bayesian model to unravel the complex interactions between marketing channels such as online ads, social media, and promotions. We'll dive deep into how the Bayesian model was designed, discussing how we provided the AI system with expert knowledge, and presenting how delays and saturation were modelled.
We will also tackle aspects of the technical implementation, discussing how Python, PyMC, and Streamlit provided us with the all the tools we needed to develop an effective, efficient, and user-friendly system.
Attendees will walk away with:
NetworkX is arguably the most popular graph analytics library available today, but one of its greatest strengths - the pure-python implementation - is also possibly its biggest weakness. If you're a seasoned data scientists or a new student of the fascinating field of graph analytics, you're probably familiar with NetworkX and interested in how to make this extremely easy-to-use library powerful enough to handle realistically large graph workflows that often exceed the limitations of its pure-python implementation.
This talk will describe a relatively new capability of NetworkX; support for accelerated backends, and how they can benefit NetworkX users by allowing it to finally be both easy to use and fast. Through the use of backends, NetworkX can also be incorporated into workflows that take advantage of similar accelerators, such as Accelerated Pandas (cudf.pandas), to finally make these easy to use solutions scale to larger problems.
Attend this talk to learn about how you can leverage the various backends available to NetworkX today to seamlessly run graph analytics on GPUs, use GraphBLAS implementations, and more, all without leaving the comfort and convenience of the most popular graph analytics library available.
One of the more mundane tasks in the business analytics world is to measure KPIs: averages, sums, ratios, etc. Typically, these are measured period over period, to see how they trend. If you're a data analyst, you've likely been asked to debug/explain a metric, because a stakeholder wants to understand why a number has changed.
This topic isn't well grounded theory, and the answers we come up with can be lacklustre. In this talk, we discuss solutions to this very common topic. We will look at a methodology we have developed at Carbonfact, and the opensource Python tool we are sharing.
Help us become the #1 Data Podcast by leaving a rating & review! We are 67 reviews away! Thomas Gresco shares his journey from being a high school math teacher to landing a role as a Reimbursement Analyst in less than 70 days. He discusses the struggles of job hunting, the importance of a strong portfolio and network, and how following the SPN method transformed his career. 💌 Join 30k+ aspiring data analysts & get my tips in your inbox weekly 👉 https://www.datacareerjumpstart.com/newsletter 🆘 Feeling stuck in your data journey? Come to my next free "How to Land Your First Data Job" training 👉 https://www.datacareerjumpstart.com/training 👩💻 Want to land a data job in less than 90 days? 👉 https://www.datacareerjumpstart.com/daa 👔 Ace The Interview with Confidence 👉 https://www.datacareerjumpstart.com//interviewsimulator ⌚ TIMESTAMPS ⌚ TIMESTAMPS 04:10 - The Job Hunt 14:00 - The Interview Experience 20:18 - Life as an Analyst 🔗 CONNECT WITH THOMAS https://www.linkedin.com/in/thomas-gresco/ 🔗 CONNECT WITH AVERY 🎥 YouTube Channel 🤝 LinkedIn 📸 Instagram 🎵 TikTok 💻 Website Mentioned in this episode: Join the last cohort of 2025! The LAST cohort of The Data Analytics Accelerator for 2025 kicks off on Monday, December 8th and enrollment is officially open!
To celebrate the end of the year, we’re running a special End-of-Year Sale, where you’ll get: ✅ A discount on your enrollment 🎁 6 bonus gifts, including job listings, interview prep, AI tools + more
If your goal is to land a data job in 2026, this is your chance to get ahead of the competition and start strong.
👉 Join the December Cohort & Claim Your Bonuses: https://DataCareerJumpstart.com/daa https://www.datacareerjumpstart.com/daa
The Data Product Management In Action podcast, brought to you by Soda and executive producer Scott Hirleman, is a platform for data product management practitioners to share insights and experiences.
In Season 01, Episode 16, we introduce another one of our amazing hosts, Nick Zervoudis. Nick is the head of Products for Data and AI at CKDelta. He shares his journey into product management and discusses his dual roles, managing data monetization products and consulting for sister companies. We will discuss Nick’s career highlights, key successes, and challenges. Get to know Nick and learn about journey into the field of Data Product management!
About our host Nick Zervoudis: Nick is Head of Product at CKDelta, an AI software business within the CK Hutchison Holdings group. Nick oversees a portfolio of data products and works with sister companies to uncover new opportunities to innovate using data, analytics, and machine learning. Nick's career has revolved around data and advanced analytics from day one, having worked as an analyst, consultant, product manager, and instructor for startups, SMEs, and enterprises including PepsiCo, Sainsbury's, Lloyds Banking Group, IKEA, Capgemini Invent, BrainStation, QuantSpark, and Hg Capital. Nick is also the co-host of London's Data Product Management meetup, and speaks & writes regularly about data & AI product management. Connect with Nick on LinkedIn.
All views and opinions expressed are those of the individuals and do not necessarily reflect their employers or anyone else.
Join the conversation on LinkedIn. Apply to be a guest or nominate someone that you know.
Do you love what you're listening to? Please rate and review the podcast, and share it with fellow practitioners you know. Your support helps us reach more listeners and continue providing valuable insights!
The Data Product Management In Action podcast, brought to you by Soda and executive producer Scott Hirleman, is a platform for data product management practitioners to share insights and experiences.
In Season 01, Episode 17, host Nick Zervoudis ( Head of Product at CKDelta) talks to Grace Halim (Product Manager with Power Digital Marketing). In this episode Grace shares her career journey and highlights the importance of diverse experiences in shaping a successful product manager. She discusses the value of empathy, strong relationships with engineering and data teams, and the role of curiosity in asking the right questions. Listen to Grace as she shares her plans for a career break to explore new projects!
About our host Nick Zervoudis: Nick is Head of Product at CKDelta, an AI software business within the CK Hutchison Holdings group. Nick oversees a portfolio of data products and works with sister companies to uncover new opportunities to innovate using data, analytics, and machine learning. Nick's career has revolved around data and advanced analytics from day one, having worked as an analyst, consultant, product manager, and instructor for startups, SMEs, and enterprises including PepsiCo, Sainsbury's, Lloyds Banking Group, IKEA, Capgemini Invent, BrainStation, QuantSpark, and Hg Capital. Nick is also the co-host of London's Data Product Management meetup, and speaks & writes regularly about data & AI product management. Connect with Nick on LinkedIn.
About our guest Grace Halim: Grace is a seasoned product leader with a passion for building innovative products. With over 12 years of product management experience, Grace has honed her skills in leading high-performing product teams and delivering exceptional customer experiences. From crafting engaging data products to optimizing complex enterprise systems, Grace has a proven track record of success in the product management field. Grace is currently on a career break traveling around Australia in a caravan with her young family. Having been a product leader in the last two roles she held, Grace excelled in building and scaling product teams, fostering a culture of innovation, and driving business growth. Her teams' focus on customer focus and strategic thinking have been instrumental in delivering successful products that resonate with customers and drive bottom-line results. Beyond her corporate experience, Grace is an entrepreneur at heart. As co-founder of a data platform, she demonstrated her ability to turn a vision into a paying customer. Stay up to date with Grace’s adventure on LinkedIn.
All views and opinions expressed are those of the individuals and do not necessarily reflect their employers or anyone else.
Join the conversation on LinkedIn.
Apply to be a guest or nominate someone that you know.
Do you love what you're listening to? Please rate and review the podcast, and share it with fellow practitioners you know. Your support helps us reach more listeners and continue providing valuable insights!
Nisha Paliwal, who leads enterprise data tech at Capital One, joins Tristan to discuss building a strong data culture for in the world of AI. She is the co-author of the book Secrets of AI Value Creation. For full show notes and to read 6+ years of back issues of the podcast's companion newsletter, head to https://roundup.getdbt.com. The Analytics Engineering Podcast is sponsored by dbt Labs.