talk-data.com talk-data.com

Topic

Data Contracts

data_governance data_quality data_engineering

64

tagged

Activity Trend

14 peak/qtr
2020-Q1 2026-Q1

Activities

64 activities · Newest first

Building Data Products

As organizations grapple with fragmented data, siloed teams, and inconsistent pipelines, data products have emerged as a practical solution for delivering trusted, scalable, and reusable data assets. In Building Data Products, Jean-Georges Perrin provides a comprehensive, standards-driven playbook for designing, implementing, and scaling data products that fuel innovation and cross-functional collaboration—whether or not your organization adopts a full data mesh strategy. Drawing on extensive industry experience and practitioner interviews, Perrin shows readers how to build metadata-rich, governed data products aligned to business domains. Covering foundational concepts, real-world use cases, and emerging standards like Bitol ODPS and ODCS, this guide offers step-by-step implementation advice and practical code examples for key stages—ownership, observability, active metadata, compliance, and integration. Design data products for modular reuse, discoverability, and trust Implement standards-driven architectures with rich metadata and security Incorporate AI-driven automation, SBOMs, and data contracts Scale product-driven data strategies across teams and platforms Integrate data products into APIs, CI/CD pipelines, and DevOps practices

Data Contracts in Practice

In 'Data Contracts in Practice', Ryan Collingwood provides a detailed guide to managing and formalizing data responsibilities within organizations. Through practical examples and real-world use cases, you'll learn how to systematically address data quality, governance, and integration challenges using data contracts. What this Book will help me do Learn to identify and formalize expectations in data interactions, improving clarity among teams. Master implementation techniques to ensure data consistency and quality across critical business processes. Understand how to effectively document and deploy data contracts to bolster data governance. Explore solutions for proactively addressing and managing data changes and requirements. Gain real-world skills through practical examples using technologies like Python, SQL, JSON, and YAML. Author(s) Ryan Collingwood is a seasoned expert with over 20 years of experience in product management, data analysis, and software development. His holistic techno-social approach, designed to address both technical and organizational challenges, brings a unique perspective to improving data processes. Ryan's writing is informed by his extensive hands-on experience and commitment to enabling robust data ecosystems. Who is it for? This book is ideal for data engineers, software developers, and business analysts working to enhance organizational data integration. Professionals with a familiarity of system design, JSON, and YAML will find it particularly beneficial. Enterprise architects and leadership roles looking to understand data contract implementation and their business impacts will also greatly benefit. Basic understanding of Python and SQL is recommended to maximize learning.

In this episode, I sit down with Mark Freeman and Chad Sanderson (Gable.ai) to discuss the release of their new O’Reilly book, Data Contracts: Developing Production-Grade Pipelines at Scale. They dive deep into the chaotic journey of writing a 350-page book while simultaneously building a venture-backed startup. The conversation takes a sharp turn into the evolution of Data Contracts. While the concept started with data engineers, Mark and Chad explain why they pivoted their focus to software engineers. They argue that software engineers are facing a "Data Lake Moment, "prioritizing speed over craftsmanship, resulting in massive technical debt and integration failures.

Gable: https://www.gable.ai/

Bien menée, la gouvernance est un moteur de croissance. Durant cette session, Jean-Georges Perrin montrera comment les data contracts apportent précision, confiance et responsabilité à vos pipelines données et IA, sans créer de goulots d'étranglement. En utilisant l'Open Data Contract Standard (ODCS) du projet Bitol de la Fondation Linux, vous découvrirez comment les organisations peuvent réduire les défauts en aval, accélérer l'intégration des modèles IA, réduire les risques de conformité et simplifier la gestion des incidents, souvent en quelques jours seulement.

Découvrez comment l’observabilité des données renforce une approche moderne de la gouvernance des données en garantissant des Data Products fiables et des Data Contracts respectés. Avec la plateforme Actian Data Intelligence – qui réunit un catalogue de données, une observabilité en temps réel pilotée par l’IA et une gouvernance fédérée – les organisations peuvent définir des Data Products enrichis de métriques de qualité, de règles intégrées et d’une traçabilité complète. La surveillance continue permet de s’assurer du respect des Data Contracts, offrant ainsi aux équipes métiers et techniques la confiance nécessaire pour partager et réutiliser les données en toute sécurité. Une démonstration en direct montrera comment Actian fait de l’observabilité le socle de Data Products de qualité, favorisant adoption, conformité et innovation à l’échelle de l’entreprise.

When done right, governance is a growth engine. In this talk, Jean-Georges “jgp” Perrin will show how data contracts bring precision, trust, and accountability into your data and AI pipelines—without creating bottlenecks. Using the Open Data Contract Standard (ODCS) from the Linux Foundation’s Bitol project, you’ll see how organizations can cut downstream defects, accelerate AI model onboarding, lower compliance risk, and reduce firefighting—often in just days.

Ensuring high-quality data is essential for building user trust and enabling data teams to work efficiently. In this talk, we’ll explore how the Astronomer data team leverages Airflow to uphold data quality across complex pipelines; minimizing firefighting and maximizing confidence in reported metrics. Maintaining data quality requires a multi-faceted approach: safeguarding the integrity of source data, orchestrating pipelines reliably, writing robust code, and maintaining consistency in outputs. We’ve embedded data quality into the DevEx experience, so it’s always at the forefront instead of in the backlog of tech debt. We’ll share how we’ve operationalized: Implementing data contracts to define and enforce expectations Differentiating between critical (pipeline-blocking) and non-critical (soft) failures Exposing upstream data issues to domain owners Tracking metrics to measure overall data quality of our team Join us to learn practical strategies for building scalable, trustworthy data systems powered by Airflow.

Summary In this episode of the Data Engineering Podcast we welcome back Nick Schrock, CTO and founder of Dagster Labs, to discuss the evolving landscape of data engineering in the age of AI. As AI begins to impact data platforms and the role of data engineers, Nick shares his insights on how it will ultimately enhance productivity and expand software engineering's scope. He delves into the current state of AI adoption, the importance of maintaining core data engineering principles, and the need for human oversight when leveraging AI tools effectively. Nick also introduces Dagster's new components feature, designed to modularize and standardize data transformation processes, making it easier for teams to collaborate and integrate AI into their workflows. Join in to explore the future of data engineering, the potential for AI to abstract away complexity, and the importance of open standards in preventing walled gardens in the tech industry.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementThis episode is brought to you by Coresignal, your go-to source for high-quality public web data to power best-in-class AI products. Instead of spending time collecting, cleaning, and enriching data in-house, use ready-made multi-source B2B data that can be smoothly integrated into your systems via APIs or as datasets. With over 3 billion data records from 15+ online sources, Coresignal delivers high-quality data on companies, employees, and jobs. It is powering decision-making for more than 700 companies across AI, investment, HR tech, sales tech, and market intelligence industries. A founding member of the Ethical Web Data Collection Initiative, Coresignal stands out not only for its data quality but also for its commitment to responsible data collection practices. Recognized as the top data provider by Datarade for two consecutive years, Coresignal is the go-to partner for those who need fresh, accurate, and ethically sourced B2B data at scale. Discover how Coresignal's data can enhance your AI platforms. Visit dataengineeringpodcast.com/coresignal to start your free 14-day trial. Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details. This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Nick Schrock about lowering the barrier to entry for data platform consumersInterview IntroductionHow did you get involved in the area of data management?Can you start by giving your summary of the impact that the tidal wave of AI has had on data platforms and data teams?For anyone who hasn't heard of Dagster, can you give a quick summary of the project?What are the notable changes in the Dagster project in the past year?What are the ecosystem pressures that have shaped the ways that you think about the features and trajectory of Dagster as a project/product/community?In your recent release you introduced "components", which is a substantial change in how you enable teams to collaborate on data problems. What was the motivating factor in that work and how does it change the ways that organizations engage with their data?tension between being flexible and extensible vs. opinionated and constrainedincreased dependency on orchestration with LLM use casesreducing the barrier to contribution for data platform/pipelinesbringing application engineers into the mixchallenges of meeting users/teams where they are (languages, platform investments, etc.)What are the most interesting, innovative, or unexpected ways that you have seen teams applying the Components pattern?What are the most interesting, unexpected, or challenging lessons that you have learned while working on the latest iterations of Dagster?When is Dagster the wrong choice?What do you have planned for the future of Dagster?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Links Dagster+ EpisodeDagster Components Slide DeckThe Rise Of Medium CodeLakehouse ArchitectureIcebergDagster ComponentsPydantic ModelsKubernetesDagster PipesRuby on RailsdbtSlingFivetranTemporalMCP == Model Context ProtocolThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Data is the backbone of modern decision-making, but centralizing it is only the tip of the iceberg. Entitlements, secure sharing and just-in-time availability are critical challenges to any large-scale platform. Join Goldman Sachs as we reveal how our Legend Lakehouse, coupled with Databricks, overcomes these hurdles to deliver high-quality, governed data at scale. By leveraging an open table format (Apache Iceberg) and open catalog format (Unity Catalog), we ensure platform interoperability and vendor neutrality. Databricks Unity Catalog then provides a robust entitlement system that aligns with our data contracts, ensuring consistent access control across producer and consumer workspaces. Finally, Legend functions, integrating with Databricks User Defined Functions (UDF), offer real-time data enrichment and secure transformations without exposing raw datasets. Discover how these components unite to streamline analytics, bolster governance and power innovation.

Lessons Learned: Building a Scalable Game Analytics Platform at Netflix

Over the past three years, Netflix has built a catalog of 100+ mobile and cloud games across TV, mobile and web platforms. With both internal and external studios contributing to this diverse ecosystem, building a robust game analytics platform became crucial for gaining insights into player behavior, optimizing game performance and driving member engagement.In this talk, we’ll share our journey of building Netflix’s Game Analytics platform from the ground up. We’ll highlight key decisions around data strategy, such as whether to develop an in-house solution or adopt an external service. We’ll discuss the challenges of balancing developer autonomy with data integrity and the complexities of managing data contracts for custom game telemetry, with an emphasis on self-service analytics. Attendees will learn how the Games Data team navigated these challenges, the lessons learned and the trade-offs involved in building a multi-tenant data ecosystem that supports diverse stakeholders.

Sponsored by: Atlan | Domain-driven Data Governance in the AI Era: A Conversation with General Motors and Atlan

Now the largest automaker in the United States, selling more than 2.7 million vehicles in 2024, General Motors is setting a bold vision for its future, with Software-defined vehicles and AI as a driving force. With data as a crucial asset, a transformation of this scale calls for a modern approach to Data Governance. Join Sherri Adame, Enterprise Data Governance Leader at General Motors, to learn about GM’s novel governance approach, supported by technologies like Atlan and Databricks. Hear how Sherri and her team are shifting governance to the left with automation, implementing data contracts, and accelerating data product discovery across domains, creating a cultural shift that emphasizes data as a competitive advantage.

Summary In this episode of the Data Engineering Podcast Alex Albu, tech lead for AI initiatives at Starburst, talks about integrating AI workloads with the lakehouse architecture. From his software engineering roots to leading data engineering efforts, Alex shares insights on enhancing Starburst's platform to support AI applications, including an AI agent for data exploration and using AI for metadata enrichment and workload optimization. He discusses the challenges of integrating AI with data systems, innovations like SQL functions for AI tasks and vector databases, and the limitations of traditional architectures in handling AI workloads. Alex also shares his vision for the future of Starburst, including support for new data formats and AI-driven data exploration tools.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th. This episode is brought to you by Coresignal, your go-to source for high-quality public web data to power best-in-class AI products. Instead of spending time collecting, cleaning, and enriching data in-house, use ready-made multi-source B2B data that can be smoothly integrated into your systems via APIs or as datasets. With over 3 billion data records from 15+ online sources, Coresignal delivers high-quality data on companies, employees, and jobs. It is powering decision-making for more than 700 companies across AI, investment, HR tech, sales tech, and market intelligence industries. A founding member of the Ethical Web Data Collection Initiative, Coresignal stands out not only for its data quality but also for its commitment to responsible data collection practices. Recognized as the top data provider by Datarade for two consecutive years, Coresignal is the go-to partner for those who need fresh, accurate, and ethically sourced B2B data at scale. Discover how Coresignal's data can enhance your AI platforms. Visit dataengineeringpodcast.com/coresignal to start your free 14-day trial.Your host is Tobias Macey and today I'm interviewing Alex Albu about how Starburst is extending the lakehouse to support AI workloadsInterview IntroductionHow did you get involved in the area of data management?Can you start by outlining the interaction points of AI with the types of data workflows that you are supporting with Starburst?What are some of the limitations of warehouse and lakehouse systems when it comes to supporting AI systems?What are the points of friction for engineers who are trying to employ LLMs in the work of maintaining a lakehouse environment?Methods such as tool use (exemplified by MCP) are a means of bolting on AI models to systems like Trino. What are some of the ways that is insufficient or cumbersome?Can you describe the technical implementation of the AI-oriented features that you have incorporated into the Starburst platform?What are the foundational architectural modifications that you had to make to enable those capabilities?For the vector storage and indexing, what modifications did you have to make to iceberg?What was your reasoning for not using a format like Lance?For teams who are using Starburst and your new AI features, what are some examples of the workflows that they can expect?What new capabilities are enabled by virtue of embedding AI features into the interface to the lakehouse?What are the most interesting, innovative, or unexpected ways that you have seen Starburst AI features used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on AI features for Starburst?When is Starburst/lakehouse the wrong choice for a given AI use case?What do you have planned for the future of AI on Starburst?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links StarburstPodcast EpisodeAWS AthenaMCP == Model Context ProtocolLLM Tool UseVector EmbeddingsRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodeStarburst Data ProductsLanceLanceDBParquetORCpgvectorStarburst IcehouseThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

How Danone Enhanced Global Data Sharing with Delta Sharing

Learn how Danone, a global leader in the food industry, improved its data-sharing processes using Delta Sharing, an open protocol developed by Databricks. This session will explore how Danone migrated from a traditional hub-and-spoke model to a more efficient and scalable data-sharing approach that works seamlessly across regions and platforms. We’ll discuss practical concepts such as in-region and cross-region data sharing, fine-grained access control, data discovery, and the implementation of data contracts. You’ll also hear about the strategies Danone uses to deliver governed data efficiently while maintaining compliance with global regulations. Additionally, we’ll discuss a cost comparison between direct data access and replication. Finally, we’ll share insights into the challenges faced by global organizations in managing data sharing at scale and how Danone addressed these issues. Attendees will gain practical knowledge on building a reliable and secure data-sharing framework for international collaboration.

Summary In this episode of the Data Engineering Podcast Mai-Lan Tomsen Bukovec, Vice President of Technology at AWS, talks about the evolution of Amazon S3 and its profound impact on data architecture. From her work on compute systems to leading the development and operations of S3, Mylan shares insights on how S3 has become a foundational element in modern data systems, enabling scalable and cost-effective data lakes since its launch alongside Hadoop in 2006. She discusses the architectural patterns enabled by S3, the importance of metadata in data management, and how S3's evolution has been driven by customer needs, leading to innovations like strong consistency and S3 tables.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Mai-Lan Tomsen Bukovec about the evolutions of S3 and how it has transformed data architectureInterview IntroductionHow did you get involved in the area of data management?Most everyone listening knows what S3 is, but can you start by giving a quick summary of what roles it plays in the data ecosystem?What are the major generational epochs in S3, with a particular focus on analytical/ML data systems?The first major driver of analytical usage for S3 was the Hadoop ecosystem. What are the other elements of the data ecosystem that helped shape the product direction of S3?Data storage and retrieval have been core primitives in computing since its inception. What are the characteristics of S3 and all of its copycats that led to such a difference in architectural patterns vs. other shared data technologies? (e.g. NFS, Gluster, Ceph, Samba, etc.)How does the unified pool of storage that is exemplified by S3 help to blur the boundaries between application data, analytical data, and ML/AI data?What are some of the default patterns for storage and retrieval across those three buckets that can lead to anti-patterns which add friction when trying to unify those use cases?The age of AI is leading to a massive potential for unlocking unstructured data, for which S3 has been a massive dumping ground over the years. How is that changing the ways that your customers think about the value of the assets that they have been hoarding for so long?What new architectural patterns is that generating?What are the most interesting, innovative, or unexpected ways that you have seen S3 used for analytical/ML/Ai applications?What are the most interesting, unexpected, or challenging lessons that you have learned while working on S3?When is S3 the wrong choice?What do you have planned for the future of S3?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links AWS S3KinesisKafkaSQSEMRDrupalWordpressNetflix Blog on S3 as a Source of TruthHadoopMapReduceNasa JPLFINRA == Financial Industry Regulatory AuthorityS3 Object VersioningS3 Cross RegionS3 TablesIcebergParquetAWS KMSIceberg RESTDuckDBNFS == Network File SystemSambaGlusterFSCephMinIOS3 MetadataPhotoshop Generative FillAdobe FireflyTurbotax AI AssistantAWS Access AnalyzerData ProductsS3 Access PointAWS Nova ModelsLexisNexis ProtegeS3 Intelligent TieringS3 Principal Engineering TenetsThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Patrick Thompson, co-founder of Clarify and former co-founder of Iteratively (acquired by Amplitude), joined Yuliia and Dumky to discuss the evolution from data quality to decision quality. Patrick shares his experience building data contracts solutions at Atlassian and later developing analytics tracking tools. Patrick challenges the assumption that AI will eliminate the need for structured data. He argues that while LLMs excel at understanding unstructured data, businesses still need deterministic systems for automation and decision-making. Patrick shares insights on why enforcing data quality at the source remains critical, even in an AI-first world, and explains his shift from analytics to CRM while maintaining focus on customer data unification and business impact over technical perfectionism.Tune in!

Summary In this episode of the Data Engineering Podcast Chakravarthy Kotaru talks about scaling data operations through standardized platform offerings. From his roots as an Oracle developer to leading the data platform at a major online travel company, Chakravarthy shares insights on managing diverse database technologies and providing databases as a service to streamline operations. He explains how his team has transitioned from DevOps to a platform engineering approach, centralizing expertise and automating repetitive tasks with AWS Service Catalog. Join them as they discuss the challenges of migrating legacy systems, integrating AI and ML for automation, and the importance of organizational buy-in in driving data platform success.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Chakri Kotaru about scaling successful data operations through standardized platform offeringsInterview IntroductionHow did you get involved in the area of data management?Can you start by outlining the different ways that you have seen teams you work with fail due to lack of structure and opinionated design?Why NoSQL?Pairing different styles of NoSQL for different problemsUseful patterns for each NoSQL style (document, column family, graph, etc.)Challenges in platform automation and scaling edge casesWhat challenges do you anticipate as a result of the new pressures as a result of AI applications?What are the most interesting, innovative, or unexpected ways that you have seen platform engineering practices applied to data systems?What are the most interesting, unexpected, or challenging lessons that you have learned while working on data platform engineering?When is NoSQL the wrong choice?What do you have planned for the future of platform principles for enabling data teams/data applications?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links RiakDynamoDBSQL ServerCassandraScyllaDBCAP TheoremTerraformAWS Service CatalogBlog PostThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA