talk-data.com talk-data.com

Topic

Data Contracts

data_governance data_quality data_engineering

9

tagged

Activity Trend

14 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Data Engineering Podcast ×

Summary In this episode of the Data Engineering Podcast we welcome back Nick Schrock, CTO and founder of Dagster Labs, to discuss the evolving landscape of data engineering in the age of AI. As AI begins to impact data platforms and the role of data engineers, Nick shares his insights on how it will ultimately enhance productivity and expand software engineering's scope. He delves into the current state of AI adoption, the importance of maintaining core data engineering principles, and the need for human oversight when leveraging AI tools effectively. Nick also introduces Dagster's new components feature, designed to modularize and standardize data transformation processes, making it easier for teams to collaborate and integrate AI into their workflows. Join in to explore the future of data engineering, the potential for AI to abstract away complexity, and the importance of open standards in preventing walled gardens in the tech industry.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementThis episode is brought to you by Coresignal, your go-to source for high-quality public web data to power best-in-class AI products. Instead of spending time collecting, cleaning, and enriching data in-house, use ready-made multi-source B2B data that can be smoothly integrated into your systems via APIs or as datasets. With over 3 billion data records from 15+ online sources, Coresignal delivers high-quality data on companies, employees, and jobs. It is powering decision-making for more than 700 companies across AI, investment, HR tech, sales tech, and market intelligence industries. A founding member of the Ethical Web Data Collection Initiative, Coresignal stands out not only for its data quality but also for its commitment to responsible data collection practices. Recognized as the top data provider by Datarade for two consecutive years, Coresignal is the go-to partner for those who need fresh, accurate, and ethically sourced B2B data at scale. Discover how Coresignal's data can enhance your AI platforms. Visit dataengineeringpodcast.com/coresignal to start your free 14-day trial. Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details. This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Nick Schrock about lowering the barrier to entry for data platform consumersInterview IntroductionHow did you get involved in the area of data management?Can you start by giving your summary of the impact that the tidal wave of AI has had on data platforms and data teams?For anyone who hasn't heard of Dagster, can you give a quick summary of the project?What are the notable changes in the Dagster project in the past year?What are the ecosystem pressures that have shaped the ways that you think about the features and trajectory of Dagster as a project/product/community?In your recent release you introduced "components", which is a substantial change in how you enable teams to collaborate on data problems. What was the motivating factor in that work and how does it change the ways that organizations engage with their data?tension between being flexible and extensible vs. opinionated and constrainedincreased dependency on orchestration with LLM use casesreducing the barrier to contribution for data platform/pipelinesbringing application engineers into the mixchallenges of meeting users/teams where they are (languages, platform investments, etc.)What are the most interesting, innovative, or unexpected ways that you have seen teams applying the Components pattern?What are the most interesting, unexpected, or challenging lessons that you have learned while working on the latest iterations of Dagster?When is Dagster the wrong choice?What do you have planned for the future of Dagster?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Links Dagster+ EpisodeDagster Components Slide DeckThe Rise Of Medium CodeLakehouse ArchitectureIcebergDagster ComponentsPydantic ModelsKubernetesDagster PipesRuby on RailsdbtSlingFivetranTemporalMCP == Model Context ProtocolThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary In this episode of the Data Engineering Podcast Alex Albu, tech lead for AI initiatives at Starburst, talks about integrating AI workloads with the lakehouse architecture. From his software engineering roots to leading data engineering efforts, Alex shares insights on enhancing Starburst's platform to support AI applications, including an AI agent for data exploration and using AI for metadata enrichment and workload optimization. He discusses the challenges of integrating AI with data systems, innovations like SQL functions for AI tasks and vector databases, and the limitations of traditional architectures in handling AI workloads. Alex also shares his vision for the future of Starburst, including support for new data formats and AI-driven data exploration tools.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th. This episode is brought to you by Coresignal, your go-to source for high-quality public web data to power best-in-class AI products. Instead of spending time collecting, cleaning, and enriching data in-house, use ready-made multi-source B2B data that can be smoothly integrated into your systems via APIs or as datasets. With over 3 billion data records from 15+ online sources, Coresignal delivers high-quality data on companies, employees, and jobs. It is powering decision-making for more than 700 companies across AI, investment, HR tech, sales tech, and market intelligence industries. A founding member of the Ethical Web Data Collection Initiative, Coresignal stands out not only for its data quality but also for its commitment to responsible data collection practices. Recognized as the top data provider by Datarade for two consecutive years, Coresignal is the go-to partner for those who need fresh, accurate, and ethically sourced B2B data at scale. Discover how Coresignal's data can enhance your AI platforms. Visit dataengineeringpodcast.com/coresignal to start your free 14-day trial.Your host is Tobias Macey and today I'm interviewing Alex Albu about how Starburst is extending the lakehouse to support AI workloadsInterview IntroductionHow did you get involved in the area of data management?Can you start by outlining the interaction points of AI with the types of data workflows that you are supporting with Starburst?What are some of the limitations of warehouse and lakehouse systems when it comes to supporting AI systems?What are the points of friction for engineers who are trying to employ LLMs in the work of maintaining a lakehouse environment?Methods such as tool use (exemplified by MCP) are a means of bolting on AI models to systems like Trino. What are some of the ways that is insufficient or cumbersome?Can you describe the technical implementation of the AI-oriented features that you have incorporated into the Starburst platform?What are the foundational architectural modifications that you had to make to enable those capabilities?For the vector storage and indexing, what modifications did you have to make to iceberg?What was your reasoning for not using a format like Lance?For teams who are using Starburst and your new AI features, what are some examples of the workflows that they can expect?What new capabilities are enabled by virtue of embedding AI features into the interface to the lakehouse?What are the most interesting, innovative, or unexpected ways that you have seen Starburst AI features used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on AI features for Starburst?When is Starburst/lakehouse the wrong choice for a given AI use case?What do you have planned for the future of AI on Starburst?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links StarburstPodcast EpisodeAWS AthenaMCP == Model Context ProtocolLLM Tool UseVector EmbeddingsRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodeStarburst Data ProductsLanceLanceDBParquetORCpgvectorStarburst IcehouseThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary In this episode of the Data Engineering Podcast Mai-Lan Tomsen Bukovec, Vice President of Technology at AWS, talks about the evolution of Amazon S3 and its profound impact on data architecture. From her work on compute systems to leading the development and operations of S3, Mylan shares insights on how S3 has become a foundational element in modern data systems, enabling scalable and cost-effective data lakes since its launch alongside Hadoop in 2006. She discusses the architectural patterns enabled by S3, the importance of metadata in data management, and how S3's evolution has been driven by customer needs, leading to innovations like strong consistency and S3 tables.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Mai-Lan Tomsen Bukovec about the evolutions of S3 and how it has transformed data architectureInterview IntroductionHow did you get involved in the area of data management?Most everyone listening knows what S3 is, but can you start by giving a quick summary of what roles it plays in the data ecosystem?What are the major generational epochs in S3, with a particular focus on analytical/ML data systems?The first major driver of analytical usage for S3 was the Hadoop ecosystem. What are the other elements of the data ecosystem that helped shape the product direction of S3?Data storage and retrieval have been core primitives in computing since its inception. What are the characteristics of S3 and all of its copycats that led to such a difference in architectural patterns vs. other shared data technologies? (e.g. NFS, Gluster, Ceph, Samba, etc.)How does the unified pool of storage that is exemplified by S3 help to blur the boundaries between application data, analytical data, and ML/AI data?What are some of the default patterns for storage and retrieval across those three buckets that can lead to anti-patterns which add friction when trying to unify those use cases?The age of AI is leading to a massive potential for unlocking unstructured data, for which S3 has been a massive dumping ground over the years. How is that changing the ways that your customers think about the value of the assets that they have been hoarding for so long?What new architectural patterns is that generating?What are the most interesting, innovative, or unexpected ways that you have seen S3 used for analytical/ML/Ai applications?What are the most interesting, unexpected, or challenging lessons that you have learned while working on S3?When is S3 the wrong choice?What do you have planned for the future of S3?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links AWS S3KinesisKafkaSQSEMRDrupalWordpressNetflix Blog on S3 as a Source of TruthHadoopMapReduceNasa JPLFINRA == Financial Industry Regulatory AuthorityS3 Object VersioningS3 Cross RegionS3 TablesIcebergParquetAWS KMSIceberg RESTDuckDBNFS == Network File SystemSambaGlusterFSCephMinIOS3 MetadataPhotoshop Generative FillAdobe FireflyTurbotax AI AssistantAWS Access AnalyzerData ProductsS3 Access PointAWS Nova ModelsLexisNexis ProtegeS3 Intelligent TieringS3 Principal Engineering TenetsThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary In this episode of the Data Engineering Podcast Chakravarthy Kotaru talks about scaling data operations through standardized platform offerings. From his roots as an Oracle developer to leading the data platform at a major online travel company, Chakravarthy shares insights on managing diverse database technologies and providing databases as a service to streamline operations. He explains how his team has transitioned from DevOps to a platform engineering approach, centralizing expertise and automating repetitive tasks with AWS Service Catalog. Join them as they discuss the challenges of migrating legacy systems, integrating AI and ML for automation, and the importance of organizational buy-in in driving data platform success.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Chakri Kotaru about scaling successful data operations through standardized platform offeringsInterview IntroductionHow did you get involved in the area of data management?Can you start by outlining the different ways that you have seen teams you work with fail due to lack of structure and opinionated design?Why NoSQL?Pairing different styles of NoSQL for different problemsUseful patterns for each NoSQL style (document, column family, graph, etc.)Challenges in platform automation and scaling edge casesWhat challenges do you anticipate as a result of the new pressures as a result of AI applications?What are the most interesting, innovative, or unexpected ways that you have seen platform engineering practices applied to data systems?What are the most interesting, unexpected, or challenging lessons that you have learned while working on data platform engineering?When is NoSQL the wrong choice?What do you have planned for the future of platform principles for enabling data teams/data applications?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links RiakDynamoDBSQL ServerCassandraScyllaDBCAP TheoremTerraformAWS Service CatalogBlog PostThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary Data contracts are both an enforcement mechanism for data quality, and a promise to downstream consumers. In this episode Tom Baeyens returns to discuss the purpose and scope of data contracts, emphasizing their importance in achieving reliable analytical data and preventing issues before they arise. He explains how data contracts can be used to enforce guarantees and requirements, and how they fit into the broader context of data observability and quality monitoring. The discussion also covers the challenges and benefits of implementing data contracts, the organizational impact, and the potential for standardization in the field.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst is an end-to-end data lakehouse platform built on Trino, the query engine Apache Iceberg was designed for, with complete support for all table formats including Apache Iceberg, Hive, and Delta Lake. Trusted by teams of all sizes, including Comcast and Doordash. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino.At Outshift, the incubation engine from Cisco, they are driving innovation in AI, cloud, and quantum technologies with the powerful combination of enterprise strength and startup agility. Their latest innovation for the AI ecosystem is Motific, addressing a critical gap in going from prototype to production with generative AI. Motific is your vendor and model-agnostic platform for building safe, trustworthy, and cost-effective generative AI solutions in days instead of months. Motific provides easy integration with your organizational data, combined with advanced, customizable policy controls and observability to help ensure compliance throughout the entire process. Move beyond the constraints of traditional AI implementation and ensure your projects are launched quickly and with a firm foundation of trust and efficiency. Go to motific.ai today to learn more!Your host is Tobias Macey and today I'm interviewing Tom Baeyens about using data contracts to build a clearer API for your dataInterview IntroductionHow did you get involved in the area of data management?Can you describe the scope and purpose of data contracts in the context of this conversation?In what way(s) do they differ from data quality/data observability?Data contracts are also known as the API for data, can you elaborate on this?What are the types of guarantees and requirements that you can enforce with these data contracts?What are some examples of constraints or guarantees that cannot be represented in these contracts?Are data contracts related to the shift-left?Data contracts are also known as the API for data, can you elaborate on this?The obvious application of data contracts are in the context of pipeline execution flows to prevent failing checks from propagating further in the data flow. What are some of the other ways that these contracts can be integrated into an organization's data ecosystem?How did you approach the design of the syntax and implementation for Soda's data contracts?Guarantees and constraints around data in different contexts have been implemented in numerous tools and systems. What are the areas of overlap in e.g. dbt, great expectations?Are there any emerging standards or design patterns around data contracts/guarantees that will help encourage portability and integration across tooling/platform contexts?What are the most interesting, innovative, or unexpected ways that you have seen data contracts used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on data contracts at Soda?When are data contracts the wrong choice?What do you have planned for the future of data contracts?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links SodaPodcast EpisodeJBossData ContractAirflowUnit TestingIntegration TestingOpenAPIGraphQLCircuit Breaker PatternSodaCLSoda Data ContractsData MeshGreat Expectationsdbt Unit TestsOpen Data ContractsODCS == Open Data Contract StandardODPS == Open Data Product SpecificationThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary

There has been a lot of discussion about the practical application of data mesh and how to implement it in an organization. Jean-Georges Perrin was tasked with designing a new data platform implementation at PayPal and wound up building a data mesh. In this episode he shares that journey and the combination of technical and organizational challenges that he encountered in the process.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Are you tired of dealing with the headache that is the 'Modern Data Stack'? We feel your pain. It's supposed to make building smarter, faster, and more flexible data infrastructures a breeze. It ends up being anything but that. Setting it up, integrating it, maintaining it—it’s all kind of a nightmare. And let's not even get started on all the extra tools you have to buy to get it to do its thing. But don't worry, there is a better way. TimeXtender takes a holistic approach to data integration that focuses on agility rather than fragmentation. By bringing all the layers of the data stack together, TimeXtender helps you build data solutions up to 10 times faster and saves you 70-80% on costs. If you're fed up with the 'Modern Data Stack', give TimeXtender a try. Head over to dataengineeringpodcast.com/timextender where you can do two things: watch us build a data estate in 15 minutes and start for free today. Your host is Tobias Macey and today I'm interviewing Jean-Georges Perrin about his work at PayPal to implement a data mesh and the role of data contracts in making it work

Interview

Introduction How did you get involved in the area of data management? Can you start by describing the goals and scope of your work at PayPal to implement a data mesh?

What are the core problems that you were addressing with this project? Is a data mesh ever "done"?

What was your experience engaging at the organizational level to identify the granularity and ownership of the data products that were needed in the initial iteration? What was the impact of leading multiple teams on the design of how to implement communication/contracts throughout the mesh? What are the technical systems that you are relying on to power the different data domains?

What is your philosophy on enforcing uniformity in technical systems vs. relying on interface definitions as the unit of consistency?

What are the biggest challenges (technical and procedural) that you have encountered during your implementation? How are you managing visibility/auditability across the different data domains? (e.g. observability, data quality, etc.) What are the most interesting, innovative, or unexpected ways that you have seen PayPal's data mesh used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on data mesh? When is a data mesh the wrong choice? What do you have planned for the future of your data mesh at PayPal?

Contact Info

LinkedIn Blog

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

Data Mesh

O'Reilly Book (affiliate link)

The next generation of Data Platforms is the Data Mesh PayPal Conway's Law Data Mesh For All Ages - US, Data Mesh For All Ages - UK Data Mesh Radio Data Mesh Community Data Mesh In Action Great Expectations

Podcast Episode

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Sponsored By: TimeXtender: TimeXtender Logo TimeXtender is a holistic, metadata-driven solution for data integration, optimized for agility. TimeXtender provides all the features you need to build a future-proof infrastructure for ingesting, transforming, modelling, and delivering clean, reliable data in the fastest, most efficient way possible.

You can't optimize for everything all at once. That's why we take a holistic approach to data integration that optimises for agility instead of fragmentation. By unifying each layer of the data stack, TimeXtender empowers you to build data solutions 10x faster while reducing costs by 70%-80%. We do this for one simple reason: because time matters.

Go to dataengineeringpodcast.com/timextender today to get started for free!Support Data Engineering Podcast

Summary

One of the reasons that data work is so challenging is because no single person or team owns the entire process. This introduces friction in the process of collecting, processing, and using data. In order to reduce the potential for broken pipelines some teams have started to adopt the idea of data contracts. In this episode Abe Gong brings his experiences with the Great Expectations project and community to discuss the technical and organizational considerations involved in implementing these constraints to your data workflows.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you're ready to build your next pipeline, or want to test out the projects you hear about on the show, you'll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don't forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan's active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the leading end-to-end Data Observability Platform! Trusted by the data teams at Fox, JetBlue, and PagerDuty, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, dbt models, Airflow jobs, and business intelligence tools, reducing time to detection and resolution from weeks to just minutes. Monte Carlo also gives you a holistic picture of data health with automatic, end-to-end lineage from ingestion to the BI layer directly out of the box. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. Your host is Tobias Macey and today I'm interviewing Abe Gong about the technical and organizational implementation of data contracts

Interview

Introduction How did you get involved in the area of data management? Can you describe what your conception of a data contract is?

What are some of the ways that you have seen them implemented?

How has your work on Great Expectations influenced your thinking on the strategic and tactical aspects of adopting/implementing data contracts in a given team/organization?

What does the negotiation process look like for identifying what needs to be included in a contract?

What are the interfaces/integration points where data contracts are most useful/necessary? What are the discussions that need to happen when deciding when/whether a contract "violation" is a blocking action vs. issuing a notification? At what level of detail/granularity are contracts most helpful? At the technical level, what does the implementation/integration/deployment of a contract look like? What are the most interesting, innovative, or unexpected ways that you have seen data contracts used? What are the most interesting, unexpected, or chall

Summary Machine learning has become a meaningful target for data applications, bringing with it an increase in the complexity of orchestrating the entire data flow. Flyte is a project that was started at Lyft to address their internal needs for machine learning and integrated closely with Kubernetes as the execution manager. In this episode Ketan Umare and Haytham Abuelfutuh share the story of the Flyte project and how their work at Union is focused on supporting and scaling the code and community that has made Flyte successful.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! This episode is brought to you by Acryl Data, the company behind DataHub, the leading developer-friendly data catalog for the modern data stack. Open Source DataHub is running in production at several companies like Peloton, Optum, Udemy, Zynga and others. Acryl Data provides DataHub as an easy to consume SaaS product which has been adopted by several companies. Signup for the SaaS product at dataengineeringpodcast.com/acryl RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their state-of-the-art reverse ETL pipelines enable you to send enriched data to any cloud tool. Sign up free… or just get the free t-shirt for being a listener of the Data Engineering Podcast at dataengineeringpodcast.com/rudder. Data lake architectures provide the best combination of massive scalability and cost reduction, but they aren’t always the most performant option. That’s why Kyligence has built on top of the leading open source OLAP engine for data lakes, Apache Kylin. With their AI augmented engine they detect patterns from your critical queries, automatically build data marts with optimized table structures, and provide a unified SQL interface across your lake, cubes, and indexes. Their cost-based query router will give you interactive speeds across petabyte scale data sets for BI dashboards and ad-hoc data exploration. Stop struggling to speed up your data lake. Get started with Kyligence today at dataengineeringpodcast.com/kyligence Your host is Tobias Macey and today I’m interviewing Ketan Umare and Haytham Abuelfutuh about Flyte, the open source and kubernetes-native orchestration engine for your data systems

Interview

Introduction How did you get involved in the area of data management? Can you describe what Flyte is and the story behind it? What was missing in the ecosystem of available tools that made it necessary/worthwhile to create Flyte? Workflow orchestrators have been around for several years and have gone through a number of generational shifts. How would you characterize Flyte’s position in the ecosystem?

What do you see as the closest alternatives? What are the core differentiators that might lead someone to choose Flyte over e.g. Airflow/Prefect/Dagster?

What are the core primitives that Flyte exposes for building up complex workflows?

Machine learning use cases have been a core focus since the project’s inception. What are some of the ways that that manifests in the design and feature set?

Can you describe the architecture of Flyte?

How have the design and goals of the platform changed/evolved since you first started working on it?

What are the changes in the data ecosystem that have had the most substantial impact on the Flyte project? (e.g. roadmap, integrations, pushing people toward adoption, etc.) What is the process for setting up a Flyte deployment? What are the user personas that you prioritize in the design and feature development for Flyte? What is the workflow for someone building a new pipeline in Flyte?

What are the patterns that you and the community have established to encourage discovery and reuse of granular task definitions? Beyond code reuse, how can teams scale usage of Flyte at the company/organization level?

What are the affordances that you have created to facilitate local development and testing of workflows while ensuring a smooth transition to production?

What are the patterns that are available for CI/CD of workflows using Flyte?

How have you approached the design of data contracts/type definitions to provide a consistent/portable API for defining inter-task dependencies across languages? What are the available interfaces for extending Flyte and building integrations with other components across the data ecosystem? Data orchestration engines are a natural point for generating and taking advantage of rich metadata. How do you manage creation and propagation of metadata within and across the framework boundaries? Last year you founded Union to offer a managed version of Flyte. What are the features that you are offering beyond what is available in the open source?

What are the opportunities that you see for the Flyte ecosystem with a corporate entity to invest in expanding adoption?

What are the most interesting, innovative, or unexpected ways that you have seen Flyte used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Flyte? When is Flyte the wrong choice? What do you have planned for the future of Flyte?

Contact Info

Ketan Umare Haytham Abuelfutuh

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don’t forget to check out our other show, Podcast.init to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers

Links

Flyte

Slack Channel

Union.ai Kubeflow Airflow AWS Step Functions Protocol Buffers XGBoost MLFlow Dagster

Podcast Episode

Prefect

Podcast Episode

Arrow Parquet Metaflow Pytorch

Podcast.init Episode

dbt FastAPI

Podcast.init Interview

Python Type Annotations Modin

Podcast.init Interview

Monad Datahub

Podcast Episode

OpenMetadata

Podcast Episode

Hudi

Podcast Episode

Iceberg

Podcast Episode

Great Expectations

Podcast Episode

Pandera Union ML Weights and Biases Whylogs

Podcast Episode

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Sponsored By: a…

Summary Data platforms are exemplified by a complex set of connections that are subject to a set of constantly evolving requirements. In order to make this a tractable problem it is necessary to define boundaries for communication between concerns, which brings with it the need to establish interface contracts for communicating across those boundaries. The recent move toward the data mesh as a formalized architecture that builds on this design provides the language that data teams need to make this a more organized effort. In this episode Abhi Sivasailam shares his experience designing and implementing a data mesh solution with his team at Flexport, and the importance of defining and enforcing data contracts that are implemented at those domain boundaries.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Your host is Tobias Macey and today I’m interviewing Abhi Sivasailam about the different social and technical interfaces available for defining and enforcing data contracts

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what your working definition of a "data contract" is?

What are the goals and purpose of these contracts?

What are the locations and methods of defining a data contract?

What kind of information needs to be encoded in a contract definition?

How do you manage enforcement of contracts? manifestations of contracts in data mesh implementation ergonomics (technical and social) of data contracts and how to prevent them from prohibiting productivity What are the most interesting, innovative