talk-data.com talk-data.com

Topic

GitHub

version_control collaboration code_hosting

661

tagged

Activity Trend

79 peak/qtr
2020-Q1 2026-Q1

Activities

661 activities · Newest first

In this episode, Conor and Bryce chat with Jared Hoberock about the NVIDIA Thrust Parallel Algorithms Library and more!. Link to Episode 242 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: TwitterAbout the Guest Jared Hoberock joined NVIDIA Research in October 2008. His interests include parallel programming models and physically-based rendering. Jared is the co-creator of Thrust, a high performance parallel algorithms library. While at NVIDIA, Jared has contributed to the DirectX graphics driver, Gelato, a final frame film renderer, and OptiX, a high-performance, programmable ray tracing engine. Jared received a Ph.D in computer science from the University of Illinois at Urbana-Champaign. He is a two-time recipient of the NVIDIA Graduate Research Fellowship. Show Notes Date Generated: 2025-05-21 Date Released: 2025-07-11 ThrustThrust DocsCUB LibraryCCCL LibrariesIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

This BoF aims to host discussion about best practices for maintaining executable tutorials that are reproducible and reliable. The BoF is intended to be a platform to collect tips and tricks of CI/CD practices, too. The moderators recently put together a repository that builds on their experiences of maintaining numerous tutorial repositories https://scientific-python.github.io/executable-tutorials/ that covers some of the use cases but we are well aware that there are still user scenarios and use cases that are not well covered.

The BoF is a complement for both the Teaching&Learning and Maintainers track, none of the talks in those tracks seem to focus on the technical challenges around tutorials.

Block-based programming divides inputs into local arrays that are processed concurrently by groups of threads. Users write sequential array-centric code, and the framework handles parallelization, synchronization, and data movement behind the scenes. This approach aligns well with SciPy's array-centric ethos and has roots in older HPC libraries, such as NWChem’s TCE, BLIS, and ATLAS.

In recent years, many block-based Python programming models for GPUs have emerged, like Triton, JAX/Pallas, and Warp, aiming to make parallelism more accessible for scientists and increase portability.

In this talk, we'll present cuTile and Tile IR, a new Pythonic tile-based programming model and compiler recently announced by NVIDIA. We'll explore cuTile examples from a variety of domains, including a new LLAMA3-based reference app and a port of miniWeather. You'll learn the best practices for writing and debugging block-based Python GPU code, gain insight into how such code performs, and learn how it differs from traditional SIMT programming.

By the end of the session, you'll understand how block-based GPU programming enables more intuitive, portable, and efficient development of high-performance, data-parallel Python applications for HPC, data science, and machine learning.

One of the most important aspects of developing scientific software is distribution for others. The Scientific Python Development Guide was developed to provide up-to-date best practices for packaging, linting, and testing, along with a versatile template supporting multiple backends, and a WebAssembly-powered repo-review tool to check a repository directly in the guide. This talk, with the guide for reference, will cover key best practices for project setup, backend selection, packaging metadata, GitHub Actions for testing and deployment, tools for validating code quality. We will even cover tools for packaging compiled components that are simple enough for anyone to use.

Python packaging can be overwhelming. However, a trusted, community-vetted workflow can make it easier. In this hands-on workshop, you’ll learn a tested approach developed by the pyOpenSci community and vetted by Python packaging maintainers. You’ll create an installable, maintainable, and citable package using a quickstart template. You’ll also receive step-by-step guidance on publishing to TestPyPI (and resources for conda-forge, and adding a DOI with Zenodo). If you can’t install software on your laptop, you can use GitHub Codespaces to participate in the workshop. Join us to package your Python code confidently and to access ongoing support in our community beyond the workshop.

Cloud-optimized (CO) data formats are designed to efficiently store and access data directly from cloud storage without needing to download the entire dataset. These formats enable faster data retrieval, scalability, and cost-effectiveness by allowing users to fetch only the necessary subsets of data. They also allow for efficient parallel data processing using on-the-fly partitioning, which can considerably accelerate data management operations. In this sense, cloud-optimized data is a nice fit for data-parallel jobs using serverless. FaaS provides a data-driven scalable and cost-efficient experience, with practically no management burden. Each serverless function will read and process a small portion of the cloud-optimized dataset, being read in parallel directly from object storage, significantly increasing the speedup.

In this talk, you will learn how to process cloud-optimized data formats in Python using the Lithops toolkit. Lithops is a serverless data processing toolkit that is specially designed to process data from Cloud Object Storage using Serverless functions. We will also demonstrate the Dataplug library that enables Cloud Optimized data managament of scientific settings such as genomics, metabolomics, or geospatial data. We will show different data processing pipelines in the Cloud that demonstrate the benefits of cloud-optimized data management.

PyVista is a general purpose 3D visualization library used for over 2000+ open source projects for the visualization of everything from computer aided engineering and geophysics to volcanoes and digital artwork.

PyVista exposes a Pythonic API to the Visualization Toolkit (VTK) to provide tooling that is immediately usable without any prior knowledge of VTK and is being built as the 3D equivalent of Matplotlib, with plugins to Jupyter to enable visualization of 3D data using both server- and client-side rendering.

In this episode, Conor and Bryce chat with Jared Hoberock about the NVIDIA Thrust Parallel Algorithms Library, specifically scan and rotate. Link to Episode 241 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: TwitterAbout the Guest Jared Hoberock joined NVIDIA Research in October 2008. His interests include parallel programming models and physically-based rendering. Jared is the co-creator of Thrust, a high performance parallel algorithms library. While at NVIDIA, Jared has contributed to the DirectX graphics driver, Gelato, a final frame film renderer, and OptiX, a high-performance, programmable ray tracing engine. Jared received a Ph.D in computer science from the University of Illinois at Urbana-Champaign. He is a two-time recipient of the NVIDIA Graduate Research Fellowship. Show Notes Date Generated: 2025-05-21 Date Released: 2025-07-04 ThrustThrust DocsNumPyRAPIDS cuDFthrust::inclusive_scanC++98 std::rotatethrust::permutation_iteratorthrust::gatherthrust::adjacent_differenceIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

Supported by Our Partners •⁠ WorkOS — The modern identity platform for B2B SaaS. •⁠ Statsig ⁠ — ⁠ The unified platform for flags, analytics, experiments, and more. • Sonar —  Code quality and code security for ALL code.  — What happens when a company goes all in on AI? At Shopify, engineers are expected to utilize AI tools, and they’ve been doing so for longer than most. Thanks to early access to models from GitHub Copilot, OpenAI, and Anthropic, the company has had a head start in figuring out what works. In this live episode from LDX3 in London, I spoke with Farhan Thawar, VP of Engineering, about how Shopify is building with AI across the entire stack. We cover the company’s internal LLM proxy, its policy of unlimited token usage, and how interns help push the boundaries of what’s possible. In this episode, we cover: • How Shopify works closely with AI labs • The story behind Shopify’s recent Code Red • How non-engineering teams are using Cursor for vibecoding • Tobi Lütke’s viral memo and Shopify’s expectations around AI • A look inside Shopify’s LLM proxy—used for privacy, token tracking, and more • Why Shopify places no limit on AI token spending  • Why AI-first isn’t about reducing headcount—and why Shopify is hiring 1,000 interns • How Shopify’s engineering department operates and what’s changed since adopting AI tooling • Farhan’s advice for integrating AI into your workflow • And much more! — Timestamps (00:00) Intro (02:07) Shopify’s philosophy: “hire smart people and pair with them on problems” (06:22) How Shopify works with top AI labs  (08:50) The recent Code Red at Shopify (10:47) How Shopify became early users of GitHub Copilot and their pivot to trying multiple tools (12:49) The surprising ways non-engineering teams at Shopify are using Cursor (14:53) Why you have to understand code to submit a PR at Shopify (16:42) AI tools' impact on SaaS  (19:50) Tobi Lütke’s AI memo (21:46) Shopify’s LLM proxy and how they protect their privacy (23:00) How Shopify utilizes MCPs (26:59) Why AI tools aren’t the place to pinch pennies (30:02) Farhan’s projects and favorite AI tools (32:50) Why AI-first isn’t about freezing headcount and the value of hiring interns (36:20) How Shopify’s engineering department operates, including internal tools (40:31) Why Shopify added coding interviews for director-level and above hires (43:40) What has changed since Spotify added AI tooling  (44:40) Farhan’s advice for implementing AI tools — The Pragmatic Engineer deepdives relevant for this episode: • How Shopify built its Live Globe for Black Friday • Inside Shopify's leveling split • Real-world engineering challenges: building Cursor • How Anthropic built Artifacts — See the transcript and other references from the episode at ⁠⁠https://newsletter.pragmaticengineer.com/podcast⁠⁠ — Production and marketing by ⁠⁠⁠⁠⁠⁠⁠⁠https://penname.co/⁠⁠⁠⁠⁠⁠⁠⁠. For inquiries about sponsoring the podcast, email [email protected].

Get full access to The Pragmatic Engineer at newsletter.pragmaticengineer.com/subscribe

As teams scale their Airflow workflows, a common question is: “My DAG has 5,000 tasks—how long will it take to run in Airflow?” Beyond execution time, users often face challenges with dynamically generated DAGs, such as: Delayed visualization in the Airflow UI after deployment. High resource consumption, leading to Kubernetes pod evictions and out-of-memory errors. While estimating the resource utilization in a distributed data platform is complex, benchmarking can provide crucial insights. In this talk, we’ll share our approach to benchmarking dynamically generated DAGs with Astronomer Cosmos ( https://github.com/astronomer/astronomer-cosmos) , covering: Designing representative and extensible baseline tests. Setting up an isolated, distributed infrastructure for benchmarking. Running reproducible performance tests. Measuring DAG run times and task throughput. Evaluating CPU & memory consumption to optimize deployments. By the end of this session, you will have practical benchmarks and strategies for making informed decisions about evaluating the performance of DAGs in Airflow.

Efficiently handling long-running workflows is crucial for scaling modern data pipelines. Apache Airflow’s deferrable operators help offload tasks during idle periods — freeing worker slots while tracking progress. This session explores how Cosmos 1.9 ( https://github.com/astronomer/astronomer-cosmos ) integrates Airflow’s deferrable capabilities to enhance orchestrating dbt ( https://github.com/dbt-labs/dbt-core ) in production, with insights from recent contributions that introduced this functionality. Key takeaways: Deferrable Operators: How they work and why they’re ideal for long-running dbt tasks. Integrating with Cosmos: Refactoring and enhancements to enable deferrable behaviour across platforms. Performance Gains: Resource savings and task throughput improvements from deferrable execution. Challenges & Future Enhancements: Lessons learned, compatibility, and ideas for broader support. Whether orchestrating dbt models on a cloud warehouse or managing large-scale transformations, this session offers practical strategies to reduce resource contention and boost pipeline performance.

DAGnostics seamlessly integrates Airflow Cluster Policy hooks to enforce governance from local DAG authoring through CI pipelines to production runtime. Learn how it closes validation gaps, collapses feedback loops from hours to seconds, and ensures consistent policies across stages. We examine current runtime-only enforcement and fractured CI checks, then unveil our architecture: a pluggable policy registry via Airflow entry points, local static analysis for pre-commit validation, GitHub Actions CI integration, and runtime hook enforcement. See real-world use cases: alerting standards, resource quotas, naming conventions, and exemption handling. Next, dive into implementation: authoring policies in Python, auto-discovery, cross-environment enforcement, upstream contribution, and testing strategies. We share LinkedIn’s metrics—2,000+ DAG repos, 10,000+ daily executions supporting trunk-based development across isolated teams/use-cases, and 78% fewer runtime violations—and lessons learned scaling policy-as-code at enterprise scale. Leave with a blueprint to adopt DAGnostics and strengthen your Airflow governance while preserving full compatibility with existing systems.

We have a similar pattern of DAGs running for different data quality dimensions like accuracy, timeliness, & completeness. To do this again and again, we would be duplicating and potentially introducing human error while doing copy paste of code or making people write same code again. To solve for this, we are doing few things: Run DAGs via DagFactory to dynamically generate DAGs using just some YAML code for all the steps we want to run in our DQ checks. Hide this behind a UI which is hooked to github PR open step, now the user just provides some inputs or selects from dropdown in UI and a YAML DAG is generated for them. This highlights the potential for DAGFactory to hide Airflow Python code from users and make it more accessible to Data Analysts and Business Intelligence along with normal Software Engg, along with reducing human error. YAML is the perfect format to be able to generate code, create a PR and DagFactory is the perfect fir for that. All of this is running in GCP Cloud Composer.

In this talk, we will introduce the DAG Management Service (DMS), developed to address critical challenges in managing Airflow clusters. With over 10,000 active DAGs, a single Airflow cluster faces scaling limits and noisy neighbor issues, impacting task scheduling SLAs. DMS enhances reliability by distributing DAGs across multiple clusters and enforcing proper configurations. We will also discuss how DMS streamlines Airflow version upgrades. Upgrading from an old Airflow version to the latest requires sequential updates and code modifications for over 10,000 DAGs. DMS proposes an efficient upgrade method, reducing dependency on users. Key functions of DMS include: DAG Deployment: Selectively deploys DAG files from GitHub to Airflow clusters via an event-driven pipeline. DAG Migration: Facilitates seamless DAG migration between clusters, supporting both cluster upgrades and team-specific deployments. Connections and Variables Management: Centralizes management of connection IDs and variables, ensuring consistency and smooth migrations. Join us to explore how DMS can revolutionize your Airflow DAG management, enhancing scalability, reliability, and efficiency.

This session explores how GitHub uses Apache Airflow for efficient data engineering. We will share nearly 9 years of experiences, including lessons learnt, mistakes made, and the ways we reduced our on-call and engineering burden. We’ll demonstrate how we keep data flowing smoothly while continuously evolving Airflow and other components of our data platform, ensuring safety and reliability. The session will touch on how we migrate Airflow between cloud without user impact. We’ll also cover how we cut down the time from idea to running a DAG in production, despite our Airflow repo being among the top 15 by number of PRs within GitHub. We’ll dive into specific techniques such as testing connections and operators, relying on dag-sync, providing short-lived development environments to let developers test their DAG runs, and creating reusable patterns for DAGs. By the end of this session, you will gain practical insights and actionable strategies to improve your own data engineering processes.

Have you ever wondered why Apache Airflow builds are asymptotically() green? That thrive for “perennial green build” is not magic, it’s the result of continuous, often unseen engineering effort within our CI/CD pipelines & dev environments. This dedication ensures that maintainers can work efficiently & contributors can onboard smoothly. To tackle the ever growing contributor base, we have a CI/CD team run by volunteers putting in significant work in the foundational tooling. In this talk, we reveal some innovative solutions we have implemented like: Handling GitHub Actions pull_request_target challenges Restructuring the repo for better clarity Slack bot for CI failure alerts A cherry picker workflow for releases Pre-commit hooks Faster website and image builds Tackling the new GitHub API rate limits Solving chicken-and-egg build issues during releases Join us to understand the “why” & “how” behind these infra components. You’ll gain insights into the continuous effort required to support a thriving open-source project like Airflow and, hopefully, be inspired to contribute to these areas. () asymptotically = we fix failures as quickly as we can when they happen

In this episode, Conor and Bryce chat with Jared Hoberock about the NVIDIA Thrust Parallel Algorithms Library, Rust vs C++, Python and more. Link to Episode 240 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: TwitterAbout the Guest Jared Hoberock joined NVIDIA Research in October 2008. His interests include parallel programming models and physically-based rendering. Jared is the co-creator of Thrust, a high performance parallel algorithms library. While at NVIDIA, Jared has contributed to the DirectX graphics driver, Gelato, a final frame film renderer, and OptiX, a high-performance, programmable ray tracing engine. Jared received a Ph.D in computer science from the University of Illinois at Urbana-Champaign. He is a two-time recipient of the NVIDIA Graduate Research Fellowship. Show Notes Date Generated: 2025-05-21 Date Released: 2025-06-27 ThrustThrust Docsiota Algorithmthrust::counting_iteratorthrust::sequenceMLIRNumPyNumbaIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

¿Es posible usar un ordenador cuántico para tomar mejores decisiones financieras? En esta charla exploraremos cómo formular el clásico problema de optimización de carteras —donde buscamos maximizar retorno y minimizar riesgo— en un lenguaje que un ordenador cuántico pueda entender. Veremos cómo se traduce a un problema QUBO, cómo se implementa en Qiskit y qué ventajas puede tener frente a los métodos tradicionales. A través de ejemplos prácticos, aprenderás cómo combinar tus conocimientos de ciencia de datos con las nuevas capacidades cuánticas y qué futuro nos espera en la intersección entre finanzas, optimización y física cuántica.

In hospitals, direct patient observation is limited–nurses spend only 37% of their shift engaged in patient care, and physicians average just 10 visits per hospital stay. LookDeep Health’s AI-driven platform enables continuous and passive monitoring of individual patients, and has been deployed “in the wild” for nearly 3 years. They recently published a study validating this system, titled “Continuous Patient Monitoring with AI”. This talk is a technical dive into said paper, focusing on the intersection of AI and real-world application.