talk-data.com talk-data.com

Topic

Looker

bi data_exploration analytics

143

tagged

Activity Trend

14 peak/qtr
2020-Q1 2026-Q1

Activities

143 activities · Newest first

Summary Transactions are a necessary feature for ensuring that a set of actions are all performed as a single unit of work. In streaming systems this is necessary to ensure that a set of messages or transformations are all executed together across different queues. In this episode Denis Rystsov explains how he added support for transactions to the Redpanda streaming engine. He discusses the use cases for transactions, the different strategies, semantics, and guarantees that they might need to support, and how his implementation ended up improving the performance of bulk write operations. This is an interesting deep dive into the internals of a high performance streaming engine and the details that are involved in building distributed systems.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Denis Rystsov about implementing transactions in the RedPanda streaming engine

Interview

Introduction How did you get involved in the area of data management? Can you quickly recap what RedPanda is and the goals of the project? What are the use cases for transactions in a pub/sub messaging system?

What are the elements of streaming systems that make atomic transactions a complex problem?

What was the motivation for starting down the path of adding transactions to the RedPanda engine?

How did the constraint of supporting the Kafka API influence your implementation strategy for transaction semantics?

Summary Aerospike is a database engine that is designed to provide millisecond response times for queries across terabytes or petabytes. In this episode Chief Strategy Officer, Lenley Hensarling, explains how the ability to process these large volumes of information in real-time allows businesses to unlock entirely new capabilities. He also discusses the technical implementation that allows for such extreme performance and how the data model contributes to the scalability of the system. If you need to deal with massive data, at high velocities, in milliseconds, then Aerospike is definitely worth learning about.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold’s proactive approach to data quality helps data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. Your host is Tobias Macey and today I’m interviewing Lenley Hensarling about Aerospike and building real-time data platforms

Interview

Introduction How did you get involved in the area of data management? Can you describe what Aerospike is and the story behind it?

What are the use cases that it is uniquely well suited for? What are the use cases that you and the Aerospike team are focusing on and how does that influence your focus on priorities of feature development and user experience?

What are the driving factors for building a real-time data platform? How is Aerospike being incorporated in application and data architectures? Can you describe how the Aerospike engine is architected?

How have the design and architecture changed or evolved since it was first created? How have market forces influenced the product priorities and focus?

What are the challenges that end users face when determining how to model their data given a key/value storage interface?

What are the abstrac

Summary The promise of online services is that they will make your life easier in exchange for collecting data about you. The reality is that they use more information than you realize for purposes that are not what you intended. There have been many attempts to harness all of the data that you generate for gaining useful insights about yourself, but they are generally difficult to set up and manage or require software development experience. The team at Prifina have built a platform that allows users to create their own personal data cloud and install applications built by developers that power useful experiences while keeping you in full control. In this episode Markus Lampinen shares the goals and vision of the company, the technical aspects of making it a reality, and the future vision for how services can be designed to respect user’s privacy while still providing compelling experiences.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Your host is Tobias Macey and today I’m interviewing Markus Lampinen about Prifina, a platform for building applications powered by personal data that is under the user’s control

Interview

Introduction How did you get involved in the area of data management? Can you describe what Prifina is and the story behind it?

What are the primary goals of Prifina?

There has been a lof of interest in the "quantified self" and different projects (many that are open source) which aim to aggregate all of a user

Summary The accuracy and availability of data has become critically important to the day-to-day operation of businesses. Similar to the practice of site reliability engineering as a means of ensuring consistent uptime of web services, there has been a new trend of building data reliability engineering practices in companies that rely heavily on their data. In this episode Egor Gryaznov explains how this practice manifests from a technical and organizational perspective and how you can start adopting it in your own teams.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Your host is Tobias Macey and today I’m interviewing Egor Gryaznov, co-founder and CTO of Bigeye, about the ideas and practices of data reliability engineering and how to integrate it into your systems

Interview

Introduction How did you get involved in the area of data management? What does the term "Data Reliability Engineering" mean? What is encompassed under the umbrella of Data Reliability Engineering?

How does it compare to the concepts from site reliability engineering? Is DRE just a repackaged version of DataOps?

Why is Data Reliability Engineering particularly important now? Who is responsible for the practice of DRE in an organization? What are some areas of innovation that teams are focusing on to support a DRE practice? What are the tools that teams are using to improve the reliability of their data operations? What are the organizational systems that need to be in place to support a DRE practice?

What are some potential roadblocks that teams might have to address when planning and implementing a DRE strategy?

What are the most interesting, innovative, or unexpected approaches/solutions to DRE that you have seen? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Data Reliability Engineering? Is Data Reliability Engi

Summary Python has beome the de facto language for working with data. That has brought with it a number of challenges having to do with the speed and scalability of working with large volumes of information.There have been many projects and strategies for overcoming these challenges, each with their own set of tradeoffs. In this episode Ehsan Totoni explains how he built the Bodo project to bring the speed and processing power of HPC techniques to the Python data ecosystem without requiring any re-work.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Your host is Tobias Macey and today I’m interviewing Ehsan Totoni about Bodo, a system for automatically optimizing and parallelizing python code for massively parallel data processing and analytics

Interview

Introduction How did you get involved in the area of data management? Can you describe what Bodo is and the story behind it? What are the techniques/technologies that teams might use to optimize or scale out their data processing workflows? Why have you focused your efforts on the Python language and toolchain?

Do you see any potential for expanding into other language communities? What are the shortcomings of projects such as Dask and Ray for scaling out Python data projects?

Many people are familiar with the principle of HPC architectures, but can you share an overview of the current state of the art for HPC?

What are the tradeoffs of HPC vs scale-out distributed systems?

Can you d

Summary Building, scaling, and maintaining the operational components of a machine learning workflow are all hard problems. Add the work of creating the model itself, and it’s not surprising that a majority of companies that could greatly benefit from machine learning have yet to either put it into production or see the value. Tristan Zajonc recognized the complexity that acts as a barrier to adoption and created the Continual platform in response. In this episode he shares his perspective on the benefits of declarative machine learning workflows as a means of accelerating adoption in businesses that don’t have the time, money, or ambition to build everything from scratch. He also discusses the technical underpinnings of what he is building and how using the data warehouse as a shared resource drastically shortens the time required to see value. This is a fascinating episode and Tristan’s work at Continual is likely to be the catalyst for a new stage in the machine learning community.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Tristan Zajonc about Continual, a platform for automating the creation and application of operational AI on top of your data warehouse

Interview

Introduction How did you get involved in the area of data management? Can you describe what Continual is and the story behind it?

What is your definition for "operational AI" and how does it differ from other applications of ML/AI?

What are some example use cases for AI in an operational capacity?

What are the barriers to adoption for organizations that want to take advantage of predictive analytics?

Who are the target users of Continual? Can you describe how the Continual platform is implemented?

How has the design and infrastructure changed or evolved since you first began working on it?

What is the workflow for

Summary Biology has been gaining a lot of attention in recent years, even before the pandemic. As an outgrowth of that popularity, a new field has grown up that pairs statistics and compuational analysis with scientific research, namely bioinformatics. This brings with it a unique set of challenges for data collection, data management, and analytical capabilities. In this episode Jillian Rowe shares her experience of working in the field and supporting teams of scientists and analysts with the data infrastructure that they need to get their work done. This is a fascinating exploration of the collaboration between data professionals and scientists.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Your host is Tobias Macey and today I’m interviewing Jillian Rowe about data engineering practices for bioinformatics projects

Interview

Introduction How did you get involved in the area of data management? How did you get into the field of bioinformatics? Can you describe what is unique about data needs in bioinformatics? What are some of the problems that you have found yourself regularly solving for your clients? When building data engineering stacks for bioinformatics, what are the attributes that you are optimizing for? (e.g. speed, UX, scale, correctness, etc.) Can you describe a typical set of technologies that you implement when working on a new project?

What kinds of systems do you need to integrate with?

What are the data formats that ar

Summary The Cassandra database is one of the first open source options for globally scalable storage systems. Since its introduction in 2008 it has been powering systems at every scale. The community recently released a new major version that marks a milestone in its maturity and stability as a project and database. In this episode Ben Bromhead, CTO of Instaclustr, shares the challenges that the community has worked through, the work that went into the release, and how the stability and testing improvements are setting the stage for the future of the project.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Ben Bromhead about the recent release of Cassandra version 4 and how it fits in the current landscape of data tools

Interview

Introduction How did you get involved in the area of data management? For anyone who isn’t familiar with Cassandra, can you briefly describe what it is and some of the story behind it?

How did you get involved in the Cassandra project and how would you characterize your role?

What are the main use cases and industries where someone is likely to use Cassandra? What is notable about the version 4 release?

What were some of the factors that contributed to the long delay between versions 3 and 4? (2015 – 2021) What are your thoughts on the ongoing utility/benefits of projects such as ScyllaDB, particularly in light of the most recent release?

Cassandra is primarily used as a system of record. What are some of the tools and system architectures that users turn to when building analytical workloads for data stored in Cassandra? The architecture of Cassandra has lent itself well to the cloud native ecosystem that has been growing in recent years. What do you see as the opportunities for Cassandra over the near to medium term as the cloud continues to grow in prominence?

Summary Gartner analysts are tasked with identifying promising companies each year that are making an impact in their respective categories. For businesses that are working in the data management and analytics space they recognized the efforts of Timbr.ai, Soda Data, Nexla, and Tada. In this episode the founders and leaders of each of these organizations share their perspective on the current state of the market, and the challenges facing businesses and data professionals today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Have you ever had to develop ad-hoc solutions for security, privacy, and compliance requirements? Are you spending too much of your engineering resources on creating database views, configuring database permissions, and manually granting and revoking access to sensitive data? Satori has built the first DataSecOps Platform that streamlines data access and security. Satori’s DataSecOps automates data access controls, permissions, and masking for all major data platforms such as Snowflake, Redshift and SQL Server and even delegates data access management to business users, helping you move your organization from default data access to need-to-know access. Go to dataengineeringpodcast.com/satori today and get a $5K credit for your next Satori subscription. Your host is Tobias Macey and today I’m interviewing Saket Saurabh, Maarten Masschelein, Akshay Deshpande, and Dan Weitzner about the challenges facing data practitioners today and the solutions that are being brought to market for addressing them, as well as the work they are doing that got them recognized as "cool vendors" by Gartner.

Interview

Introduction How did you get involved in the area of data management? Can you each describe what you view as the biggest challenge facing data professionals? Who are you building your solutions for and what are the most common data management problems are you all solving? What are different components of Data Management and why is it so complex? What will simplify this process, if any? The report covers a lot of new data management terminology – data governance, data observability, data fabric, data mesh, DataOps, MLOps, AIOps – what does this all mean and why is it important for data engineers? How has the data management space changed in recent times? Describe the current data management landscape and any key developments. From your perspective, what are the biggest challenges in the data management space today? What modern data management features are lacking in existing databases? Gartner imagines a future where data and analytics leaders need to be prepared to rely on data manage

Summary The term "data platform" gets thrown around a lot, but have you stopped to think about what it actually means for you and your organization? In this episode Lior Gavish, Lior Solomon, and Atul Gupte share their view of what it means to have a data platform, discuss their experiences building them at various companies, and provide advice on how to treat them like a software product. This is a valuable conversation about how to approach the work of selecting the tools that you use to power your data systems and considerations for how they can be woven together for a unified experience across your various stakeholders.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Lior Gavish, Lior Solomon, and Atul Gupte about the technical, social, and architectural aspects of building your data platform as a product for your internal customers

Interview

Introduction How did you get involved in the area of data management? – all Can we start by establishing a definition of "data platform" for the purpose of this conversation? Who are the stakeholders in a data platform?

Where does the responsibility lie for creating and maintaining ("owning") the platform?

What are some of the technical and organizational constraints that are likely to factor into the design and execution of the platform? What are the minimum set of requirements necessary to qualify as a platform? (as opposed to a collection of discrete components)

What are the additional capabilities that should be in place to simplify the use and maintenance of the platform?

How are data platforms managed? Are they managed by technical teams, product managers, etc.? What is the profile for a data product manager? – Atul G. How do you set SLIs / SLOs with your data platform team when you don’t have clear metrics you’re tracking? – Lior S. There has been a lot of conversation recently about different interpretations of the "modern data stack". For a team who is just starting to build out their platform, h

Summary The Presto project has become the de facto option for building scalable open source analytics in SQL for the data lake. In recent months the community has focused their efforts on making it the fastest possible option for running your analytics in the cloud. In this episode Dipti Borkar discusses the work that she and her team are doing at Ahana to simplify the work of running your own PrestoDB environment in the cloud. She explains how they are optimizin the runtime to reduce latency and increase query throughput, the ways that they are contributing back to the open source community, and the exciting improvements that are in the works to make Presto an even more powerful option for all of your analytics.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Dipti Borkar, cofounder Ahana about Presto and Ahana, SaaS managed service for Presto

Interview

Introduction How did you get involved in the area of data management? Can you describe what Ahana is and the story behind it? There has been a lot of recent activity in the Presto community. Can you give an overview of the options that are available for someone wanting to use its SQL engine for querying their data?

What is Ahana’s role in the community/ecosystem? (happy to skip this question if it’s too contentious) What are some of the notable differences that have emerged over the past couple of years between the Trino (formerly PrestoSQL) and PrestoDB projects?

Another area that has been seeing a lot of activity is data lakes and projects to make them more manageable and feature complete (e.g. Hudi, Delta Lake, Iceberg, Nessie, LakeFS, etc.). How has that influenced your product focus and capabilities?

How does this activity change the calculus for organizations who are deciding on a lake or warehouse for their data architecture?

Can y

Summary Companies of all sizes and industries are trying to use the data that they and their customers generate to survive and thrive in the modern economy. As a result, they are relying on a constantly growing number of data sources being accessed by an increasingly varied set of users. In order to help data consumers find and understand the data is available, and help the data producers understand how to prioritize their work, SelectStar has built a data discovery platform that brings everyone together. In this episode Shinji Kim shares her experience as a data professional struggling to collaborate with her colleagues and how that led her to founding a company to address that problem. She also discusses the combination of technical and social challenges that need to be solved for everyone to gain context and comprehension around their most valuable asset.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Shinji Kim about SelectStar, an intelligent data discovery platform that helps you understand your data

Interview

Introduction How did you get involved in the area of data management? Can you describe what SelectStar is and the story behind it? What are the core challenges that organizations are facing around data cataloging and discovery? There has been a surge in tools and services for metadata collection, data catalogs, and data collaboration. How would you characterize the current state of the ecosystem?

What is SelectStar’s role in

Summary Collecting and cleaning data is only useful if someone can make sense of it afterward. The latest evolution in the data ecosystem is the introduction of a dedicated metrics layer to help address the challenge of adding context and semantics to raw information. In this episode Nick Handel shares the story behind Transform, a new platform that provides a managed metrics layer for your data platform. He explains the challenges that occur when metrics are maintained across a variety of systems, the benefits of unifying them in a common access layer, and the potential that it unlocks for everyone in the business to confidently answer questions with data.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Nick Handel about Transform, a platform providing a dedicated metrics layer for your data stack

Interview

Introduction How did you get involved in the area of data management? Can you describe what Transform is and the story behind it? How do you define the concept of a "metric" in the context of the data platform? What are the general strategies in the industry for creating, managing, and consuming metrics?

How has that been changing in the past couple of years?

What is driving that shift?

What are the main goals that you have for the Transform platform?

Who are the target users? How does that focus influence your approach to the design of the platform?

How is the Transform platform architected?

What are the core capabilities tha

Summary There is a wealth of tools and systems available for processing data, but the user experience of integrating them and building workflows is still lacking. This is particularly important in large and complex organizations where domain knowledge and context is paramount and there may not be access to engineers for codifying that expertise. Raj Bains founded Prophecy to address this need by creating a UI first platform for building and executing data engineering workflows that orchestrates Airflow and Spark. Rather than locking your business logic into a proprietary storage layer and only exposing it through a drag-and-drop editor Prophecy synchronizes all of your jobs with source control, allowing an easy bi-directional interaction between code first and no-code experiences. In this episode he shares his motivations for creating Prophecy, how he is leveraging the magic of compilers to translate between UI and code oriented representations of logic, and the organizational benefits of having a cohesive experience designed to bring business users and domain experts into the same platform as data engineers and analysts.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Raj Bains about Prophecy, a low-code data engineering platform built on Spark and Airflow

Interview

Introduction How did you get involved in the area of data management? Can you describe what you are building at Prophecy and the story behind it? There are a huge number of too

Summary Every data project, whether it’s analytics, machine learning, or AI, starts with the work of data cleaning. This is a critical step and benefits from being accessible to the domain experts. Trifacta is a platform for managing your data engineering workflow to make curating, cleaning, and preparing your information more approachable for everyone in the business. In this episode CEO Adam Wilson shares the story behind the business, discusses the myriad ways that data wrangling is performed across the business, and how the platform is architected to adapt to the ever-changing landscape of data management tools. This is a great conversation about how deliberate user experience and platform design can make a drastic difference in the amount of value that a business can provide to their customers.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Adam Wilson about Trifacta, a platform for modern data workers to assess quality, transform, and automate data pipelines

Interview

Introduction How did you get involved in the area of data management? Can you describe what Trifacta is and the story behind it? Across your site and material you focus on using the term "data wrangling". What is your personal definition of that term, and in what ways do you differentiate from ETL/ELT?

How does the deliberate use of that terminology influence the way that you think about the design and features of the Trifacta platform?

What is Trifacta’s role in the overall data platform/data lifecycle for an organization?

What are some examples of tools that Trifacta might replace? What tools or systems does Trifacta integrate with?

Who are the target end-users of the Trifacta platform and how do those personas direct the design and functionality? Can you describe how Trifacta is architected?

How have the goals and design of the system changed or evolved since you first began working on it?

Can you talk through the workflow and lifecycle of data as it traverses your platform, and the user interactions that drive it? How can data engineers share and encourage proper patterns for working with data assets with end-users across the organization? What are the limits of scale for volume and complexity of data assets that users are able to manage through Trifacta’s visual tools?

What are some strategies that you and your customers have found useful for pre-processing the information that enters your platform to increase the accessibility for end-users to self-serve?

What are the most interesting, innovative, or unexpected ways that you have seen Trifacta used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Trifacata? When is Trifacta the wrong choice? What do you have planned for the future of Trifacta?

Contact Info

LinkedIn @a_adam_wilson on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don’t forget to check out our other show, Podcast.init to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

Trifacta Informatica UC Berkeley Stanford University Citadel

Podcast Episode

Stanford Data Wrangler DBT

Podcast Episode

Pig Databricks Sqoop Flume SPSS Tableau SDLC == Software Delivery Life-Cycle

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary Data integration in the form of extract and load is the critical first step of every data project. There are a large number of commercial and open source projects that offer that capability but it is still far from being a solved problem. One of the most promising community efforts is that of the Singer ecosystem, but it has been plagued by inconsistent quality and design of plugins. In this episode the members of the Meltano project share the work they are doing to improve the discovery, quality, and capabilities of Singer taps and targets. They explain their work on the Meltano Hub and the Singer SDK and their long term goals for the Singer community.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Douwe Maan, Taylor Murphy, and AJ Steers about their work to level up the Singer ecosystem through projects like Meltano Hub and the Singer SDK

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what the Singer ecosystem is? What are the current weak points/challenges in the ecosystem? What is the current role of the Meltano project/community within the ecosystem?

What are the projects and activities related to Singer that you are focused on?

What are the main goals of the Meltano Hub?

What criteria are you using to determine which projects to include in the hub? Why is the number of targets so small? What additional functionality do you have planned for the hub?

What functionality does the SDK provide?

How does the presence of the SDK make it easier to write taps/targets? What do you believe the long-term impacts of the SDK on the overall availability and quality of plugins will be?

Now that you have spun out your own business and raised funding, how does that influence the priorities and focus of your work?

How do you hope to productize what you have built at Meltano?

What are the most interesting, innovative, or unexpected ways that you have seen Meltano and Singer plugins used? What are

Summary Data Engineering is a broad and constantly evolving topic, which makes it difficult to teach in a concise and effective manner. Despite that, Daniel Molnar and Peter Fabian started the Pipeline Academy to do exactly that. In this episode they reflect on the lessons that they learned while teaching the first cohort of their bootcamp how to be effective data engineers. By focusing on the fundamentals, and making everyone write code, they were able to build confidence and impart the importance of context for their students.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Daniel Molnar and Peter Fabian about the lessons that they learned from their first cohort at the Pipeline data engineering academy

Interview

Introduction How did you get involved in the area of data management? Can you start by sharing the curriculum and learning goals for the students? How did you set a common baseline for all of the students to build from throughout the program?

What was your process for determining the structure of the tasks and the tooling used?

What were some of the topics/tools that the students had the most difficulty with?

What topics/tools were the easiest to grasp?

What are some difficulties that you encountered while trying to teach different concepts? How did you deal with the tension of teaching the fundamentals while tying them to toolchains that hiring managers are looking for? What are the successes that you had with this cohort and what changes are you making to your approach/curriculum to build on them? What are some of the failures that you encountered and what lessons have you taken from them? How did the pandemic impact your overall plan and execution of the initial cohort? What were the skills that you focused on for interview preparation? What level of ongoing support/engagement do you have with students once they complete the curriculum? What are the most interesting, innovative, or unexpected solutions that you saw from your students? What are the most interesting, unexpected, or challenging lessons that you have learned while working with your first cohort? When is a bootcamp the wrong approach for skill development? What do you have planned for the future of the Pipeline Academy?

Contact Info

Daniel

LinkedIn Website @soobrosa on Twitter

Peter

LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Pipeline Academy

Blog

Scikit Pandas Urchin Kafka Three "C"s – Context, Confidence, and Code Prefect

Podcast Episode

Great Expectations

Podcast Episode Podcast.init Episode

Docker Kubernetes Become a Data Engineer On A Shoestring James Mickens

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary Working with unstructured data has typically been a motivation for a data lake. The challenge is imposing enough order on the platform to make it useful. Kirk Marple has spent years working with data systems and the media industry, which inspired him to build a platform for automatically organizing your unstructured assets to make them more valuable. In this episode he shares the goals of the Unstruk Data Warehouse, how it is architected to extract asset metadata and build a searchable knowledge graph from the information, and the myriad ways that the system can be used. If you are wondering how to deal with all of the information that doesn’t fit in your databases or data warehouses, then this episode is for you.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Kirk Marple about Unstruk Data, a company that is building a data warehouse for unstructured data that ofers automated data preparation via metadata enrichment, integrated compute, and graph-based search

Interview

Introduction How did you get involved in the area of data management? Can you describe what Unstruk Data is and the story behind it? What would you classify as "unstructured data"?

What are some examples of industries that rely on large or varied sets of unstructured data? What are the challenges for analytics that are posed by the different categories of unstructured data?

What is the current state of the industry for working with unstructured data?

What are the unique capabilities that Unstruk provides and how does it integrate with the rest of the ecosystem? Where does it sit in the overall landscape of data tools?

Can you describe how the Unstruk data warehouse is implemented?

What are the assumptions that you had at the start of this project that have been challenged as you started working through the technical implementation and customer trials? How has the design and architecture evolved or changed since you began working on it?

How do you handle versioning of data, give

Summary Google pioneered an impressive number of the architectural underpinnings of the broader big data ecosystem. Now they offer the technologies that they run internally to external users of their cloud platform. In this episode Lak Lakshmanan enumerates the variety of services that are available for building your various data processing and analytical systems. He shares some of the common patterns for building pipelines to power business intelligence dashboards, machine learning applications, and data warehouses. If you’ve ever been overwhelmed or confused by the array of services available in the Google Cloud Platform then this episode is for you.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Lak Lakshmanan about the suite of services for data and analytics in Google Cloud Platform.

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of the tools and products that are offered as part of Google Cloud for data and analytics?

How do the various systems relate to each other for building a full workflow? How do you balance the need for clean integration between services with the need to make them useful in isolation when used as a single component of a data platform?

What have you found to be the primary motivators for customers who are adopting GCP for some or all of their data workloads? What are some of the challenges that new users of GCP encounter when working with the data and analytics products that it offers? What are the systems that you have found to be easiest to work with?

Which are the most challenging to work with, whether due to the kinds of problems that they are solving for, or due to their user experience design?

How has your work with customers fed back into the products that you are building on top of? What are some examples of architectural or software patterns that are unique to the GCP product suite? What are the most interesting, innovative, or unexpected ways that y

Summary SQL is the most widely used language for working with data, and yet the tools available for writing and collaborating on it are still clunky and inefficient. Frustrated with the lack of a modern IDE and collaborative workflow for managing the SQL queries and analysis of their big data environments, the team at Pinterest created Querybook. In this episode Justin Mejorada-Pier and Charlie Gu share the story of how the initial prototype for a data catalog ended up as one of their most widely used interfaces to their analytical data. They also discuss the unique combination of features that it offers, how it is implemented, and the path to releasing it as open source. Querybook is an impressive and unique piece of technology that is well worth exploring, so listen and try it out today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Firebolt is the fastest cloud data warehouse. Visit dataengineeringpodcast.com/firebolt to get started. The first 25 visitors will receive a Firebolt t-shirt. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Justin Mejorada-Pier and Charlie Gu about Querybook, an open source IDE for your big data projects

Interview

Introduction How did you get involved in the area of data management? Can you describe what Querybook is and the story behind it? What are the main use cases or workflows that Querybook is designed for?

What are the shortcomings of dashboarding/BI tools that make something like Querybook necessary?

The tag line calls out the fact that Querybook is an IDE for "big data". What are the manifestations of that focus in the feature set and user experience? Who are the target users of Querybook and how does that inform the feature priorities and user experience? Can you describe how Querybook is architected?

How have the goals and design changed or evolved since you first began working on it? What were some of the assumptions or design choices that you had to unwind in the process of open sourcing it?

What is the workflow for someone building a DataDoc with Querybook?

What is the experience of working as a collaborator on an analysis?

How do you handle lifecycle management of query results? What are your thoughts on the potential for extending Querybook beyond SQL-oriented analysis and integrating something like Jupyter kernels? What are the most interesting, innovative, or unexpected ways that you have seen Querybook used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Querybook? When is Querybook the wrong choice? What do you have planned for the future of Querybook?

Contact Info

Justin

Link