The AI landscape is evolving at breakneck speed, with new capabilities emerging quarterly that redefine what's possible. For professionals across industries, this creates a constant need to reassess workflows and skills. How do you stay relevant when the technology keeps leapfrogging itself? What happens to traditional roles when AI can increasingly handle complex tasks that once required specialized expertise? With product-market fit becoming a moving target and new positions like forward-deployed engineers emerging, understanding how to navigate this shifting terrain is crucial. The winners won't just be those who adopt AI—but those who can continuously adapt as it evolves. Tomasz Tunguz is a General Partner at Theory Ventures, a $235m early-stage venture capital firm. He blogs at tomtunguz.com & co-authored Winning with Data. He has worked or works with Looker, Kustomer, Monte Carlo, Dremio, Omni, Hex, Spot, Arbitrum, Sui & many others. He was previously the product manager for Google's social media monetization team, including the Google-MySpace partnership, and managed the launches of AdSense into six new markets in Europe and Asia. Before Google, Tunguz developed systems for the Department of Homeland Security at Appian Corporation. In the episode, Richie and Tom explore the rapid investment in AI, the evolution of AI models like Gemini 3, the role of AI agents in productivity, the shifting job market, the impact of AI on customer success and product management, and much more. Links Mentioned in the Show: Theory VenturesConnect with TomTom’s BlogGavin Baker on MediumAI-Native Course: Intro to AI for WorkRelated Episode: Data & AI Trends in 2024, with Tom Tunguz, General Partner at Theory VenturesRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
talk-data.com
Topic
Cyber Security
27
tagged
Activity Trend
Top Events
The promise of AI in enterprise settings is enormous, but so are the privacy and security challenges. How do you harness AI's capabilities while keeping sensitive data protected within your organization's boundaries? Private AI—using your own models, data, and infrastructure—offers a solution, but implementation isn't straightforward. What governance frameworks need to be in place? How do you evaluate non-deterministic AI systems? When should you build in-house versus leveraging cloud services? As data and software teams evolve in this new landscape, understanding the technical requirements and workflow changes is essential for organizations looking to maintain control over their AI destiny. Manasi Vartak is Chief AI Architect and VP of Product Management (AI Platform) at Cloudera. She is a product and AI leader with more than a decade of experience at the intersection of AI infrastructure, enterprise software, and go-to-market strategy. At Cloudera, she leads product and engineering teams building low-code and high-code generative AI platforms, driving the company’s enterprise AI strategy and enabling trusted AI adoption across global organizations. Before joining Cloudera through its acquisition of Verta, Manasi was the founder and CEO of Verta, where she transformed her MIT research into enterprise-ready ML infrastructure. She scaled the company to multi-million ARR, serving Fortune 500 clients in finance, insurance, and capital markets, and led the launch of enterprise MLOps and GenAI products used in mission-critical workloads. Manasi earned her PhD in Computer Science from MIT, where she pioneered model management systems such as ModelDB — foundational work that influenced the development of tools like MLflow. Earlier in her career, she held research and engineering roles at Twitter, Facebook, Google, and Microsoft. In the episode, Richie and Manasi explore AI's role in financial services, the challenges of AI adoption in enterprises, the importance of data governance, the evolving skills needed for AI development, the future of AI agents, and much more. Links Mentioned in the Show: ClouderaCloudera Evolve ConferenceCloudera Agent StudioConnect with ManasiCourse: Introduction to AI AgentsRelated Episode: RAG 2.0 and The New Era of RAG Agents with Douwe Kiela, CEO at Contextual AI & Adjunct Professor at Stanford UniversityRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
The manufacturing floor is undergoing a technological revolution with industrial AI at its center. From predictive maintenance to quality control, AI is transforming how products are designed, produced, and maintained. But implementing these technologies isn't just about installing sensors and software—it's about empowering your workforce to embrace new tools and processes. How do you overcome AI hesitancy among experienced workers? What skills should your team develop to make the most of these new capabilities? And with limited resources, how do you prioritize which AI applications will deliver the greatest impact for your specific manufacturing challenges? The answers might be simpler than you think. Barbara Humpton is President and CEO of Siemens Corporation, responsible for strategy and engagement in Siemens’ largest market. Under her leadership, Siemens USA operates across all 50 states and Puerto Rico with 45,000 employees and generated $21.1 billion in revenue in fiscal year 2024. She champions the role of technology in expanding what’s humanly possible and is a strong advocate for workforce development, mentorship, and building sustainable work-life integration. Previously, she was President and CEO of Siemens Government Technologies, leading delivery of Siemens’ products and services to U.S. federal agencies. Before joining Siemens in 2011, she held senior roles at Booz Allen Hamilton and Lockheed Martin, where she oversaw programs in national security, biometrics, border protection, and critical infrastructure, including the FBI’s Next Generation Identification and TSA’s Transportation Workers’ Identification Credential. Olympia Brikis is a seasoned technology and business leader with over a decade of experience in AI research. As the Technology and Engineering Director for Siemens' Industrial AI Research in the U.S., she leads AI strategy, technology roadmapping, and R&D for next-gen AI products. Olympia has a strong track record in developing Generative AI products that integrate industrial and digital ecosystems, driving real-world business impact. She is a recognized thought leader with numerous patents and peer-reviewed publications in AI for manufacturing, predictive analytics, and digital twins. Olympia actively engages with executives, policymakers, and AI practitioners on AI's role in enterprise strategy and workforce transformation. With a background in Computer Science from LMU Munich and an MBA from Wharton, she bridges AI research, product strategy, and enterprise adoption, mentoring the next generation of AI leaders. In the episode, Richie, Barbara, and Olympia explore the transformative power of AI in manufacturing, from predictive maintenance to digital twins, the role of industrial AI in enhancing productivity, the importance of empowering workers with new technology, real-world applications, overcoming AI hesitancy, and much more. Links Mentioned in the Show: Siemens Industrial AI SuiteConnect with Barbara and OlympiaCourse: Implementing AI Solutions in BusinessRelated Episode: Master Your Inner Game to Avoid Burnout with Klaus Kleinfeld, Former CEO at Alcoa and SiemensRewatch RADAR AI where...
Combining LLMs with enterprise knowledge bases is creating powerful new agents that can transform business operations. These systems are dramatically improving on traditional chatbots by understanding context, following conversations naturally, and accessing up-to-date information. But how do you effectively manage the knowledge that powers these agents? What governance structures need to be in place before deployment? And as we look toward a future with physical AI and robotics, what fundamental computing challenges must we solve to ensure these technologies enhance rather than complicate our lives? Jun Qian is an accomplished technology leader with extensive experience in artificial intelligence and machine learning. Currently serving as Vice President of Generative AI Services at Oracle since May 2020, Jun founded and leads the Engineering and Science group, focusing on the creation and enhancement of Generative AI services and AI Agents. Previously held roles include Vice President of AI Science and Development at Oracle, Head of AI and Machine Learning at Sift, and Principal Group Engineering Manager at Microsoft, where Jun co-founded Microsoft Power Virtual Agents. Jun's career also includes significant contributions as the Founding Manager of Amazon Machine Learning at AWS and as a Principal Investigator at Verizon. In the episode, Richie and Jun explore the evolution of AI agents, the unique features of ChatGPT, the challenges and advancements in chatbot technology, the importance of data management and security in AI, and the future of AI in computing and robotics, and much more. Links Mentioned in the Show: OracleConnect with JunCourse: Introduction to AI AgentsJun at DataCamp RADARRelated Episode: A Framework for GenAI App and Agent Development with Jerry Liu, CEO at LlamaIndexRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
The integration of AI into everyday business operations raises questions about the future of work and human agency. With AI's potential to automate and optimize, how do we ensure that it complements rather than competes with human capabilities? What measures can be taken to prevent AI from overshadowing human input and creativity? How do we strike a balance between embracing AI's benefits and preserving the essence of human contribution? Faisal Hoque is the founder and CEO of SHADOKA, NextChapter, and other companies. He also serves as a transformation and an innovation partner for CACI, an $8B company focused on U.S. national security. He volunteers for several organizations, including MIT IDEAS Social Innovation Program. He is also a contributor at the Swiss business school IMD, Thinkers50, the Project Management Institute (PMl), and others. As a founder and CEO of multiple companies, he is a three-time winner of Deloitte Technology Fast 50™ and Fast 500™ awards. He has developed more than 20 commercial platforms and worked with leadership at the U.S. DoD, DHS, GE, MasterCard, American Express, Home Depot, PepsiCo, IBM, Chase, and others. For their innovative work, he and his team have been awarded several provisional patents in the areas of user authentication, business rule routing, and metadata sorting. In the episode, Richie and Faisal explore the philosophical implications of AI on humanity, the concept of AI as a partner, the potential societal impacts of AI-driven unemployment, the importance of critical thinking and personal responsibility in the AI era, and much more. Links Mentioned in the Show: SHADOKAFaisail’s WebsiteConnect with FaisalSkill Track: Artificial Intelligence (AI) LeadershipRelated Episode: Making Better Decisions using Data & AI with Cassie Kozyrkov, Google's First Chief Decision ScientistSign up to attend RADAR: Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
The rise of AI agents in the workplace is transforming how businesses operate, tackling repetitive tasks and freeing up human employees for more creative endeavors. But what does this mean for the future of work, and how can professionals leverage these tools effectively? As AI agents become more sophisticated, capable of reasoning and decision-making, how do you ensure they align with your business goals? What are the implications for data privacy and security, and how do you manage the transition to a more automated workforce while maintaining human oversight? Surojit Chatterjee is the founder and CEO of Ema. Previously, he guided Coinbase through a successful 2021 IPO as its Chief Product Officer and scaled Google Mobile Ads and Google Shopping into multi-billion dollar businesses as the VP and Head of Product. Surojit holds 40 US patents and has an MBA from MIT, MS in Computer Science from SUNY at Buffalo, and B. Tech from IIT Kharagpur. In the episode, Richie and Surojit explore the transformative role of AI agents in automating repetitive business tasks, enhancing creativity and innovation, improving customer support, and redefining workplace efficiency. They discuss the potential of AI employees, data privacy concerns, and the future of AI-driven business processes, and much more. Links Mentioned in the Show: EmaConnect with SurojitSkill Track: Artificial Intelligence (AI) LeadershipRelated Episode: How Generative AI is Changing Leadership with Christie Smith, Founder of the Humanity Institute and Kelly Monahan, Managing Director, Research InstituteAttend RADAR Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. Rapid change seems to be the new norm within the data and AI space, and due to the ecosystem constantly changing, it can be tricky to keep up. Fortunately, any self-respecting venture capitalist looking into data and AI will stay on top of what’s changing and where the next big breakthroughs are likely to come from. We all want to know which important trends are emerging and how we can take advantage of them, so why not learn from a leading VC. Tomasz Tunguz is a General Partner at Theory Ventures, a $235m early-stage venture capital firm. He blogs sat tomtunguz.com & co-authored Winning with Data. He has worked or works with Looker, Kustomer, Monte Carlo, Dremio, Omni, Hex, Spot, Arbitrum, Sui & many others. He was previously the product manager for Google's social media monetization team, including the Google-MySpace partnership, and managed the launches of AdSense into six new markets in Europe and Asia. Before Google, Tunguz developed systems for the Department of Homeland Security at Appian Corporation. In the episode, Richie and Tom explore trends in generative AI, the impact of AI on professional fields, cloud+local hybrid workflows, data security, and changes in data warehousing through the use of integrated AI tools, the future of business intelligence and data analytics, the challenges and opportunities surrounding AI in the corporate sector. You'll also get to discover Tom's picks for the hottest new data startups. Links Mentioned in the Show: Tom’s BlogTheory VenturesArticle: What Air Canada Lost In ‘Remarkable’ Lying AI Chatbot Case[Course] Implementing AI Solutions in BusinessRelated Episode: Making Better Decisions using Data & AI with Cassie Kozyrkov, Google's First Chief Decision ScientistSign up to RADAR: AI...
As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. For our 200th episode, we bring you a special guest and taking a walk down memory lane—to the creation and development of one of the most popular programming languages in the world. Don Chamberlin is renowned as the co-inventor of SQL (Structured Query Language), the predominant database language globally, which he developed with Raymond Boyce in the mid-1970s. Chamberlin's professional career began at IBM Research in Yorktown Heights, New York, following a summer internship there during his academic years. His work on IBM's System R project led to the first SQL implementation and significantly advanced IBM’s relational database technology. His contributions were recognized when he was made an IBM Fellow in 2003 and later a Fellow of the Computer History Museum in 2009 for his pioneering work on SQL and database architectures. Chamberlin also contributed to the development of XQuery, an XML query language, as part of the W3C, which became a W3C Recommendation in January 2007. Additionally, he holds fellowships with ACM and IEEE and is a member of the National Academy of Engineering. In the episode, Richie and Don explore his early career at IBM and the development of his interest in databases alongside Ray Boyce, the database task group (DBTG), the transition to relational databases and the early development of SQL, the commercialization and adoption of SQL, how it became standardized, how it evolved and spread via open source, the future of SQL through NoSQL and SQL++ and much more. Links Mentioned in the Show: The first-ever journal paper on SQL. SEQUEL: A Structured English Query LanguageDon’s Book: SQL++ for SQL Users: A TutorialSystem R: Relational approach to database managementSQL CoursesSQL Articles, Tutorials and Code-AlongsRelated Episode: Scaling Enterprise Analytics with...
As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. Since the launch of ChatGPT, one of the trending terms outside of ChatGPT itself has been prompt engineering. This act of carefully crafting your instructions is treated as alchemy by some and science by others. So what makes an effective prompt? Alex Banks has been building and scaling AI products since 2021. He writes Sunday Signal, a newsletter offering a blend of AI advancements and broader thought-provoking insights. His expertise extends to social media platforms on X/Twitter and LinkedIn, where he educates a diverse audience on leveraging AI to enhance productivity and transform daily life. In the episode, Alex and Adel cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, strategies for better prompting, chain of thought prompting, prompt engineering as a skill and career path, building your own AI tools rather than using consumer AI products, AI literacy, the future of LLMs and much more. Links Mentioned in the Show: [Alex’s Free Course on DataCamp] Understanding Prompt EngineeringSunday SignalPrinciples by Ray Dalio: Life and WorkRelated Episode: [DataFramed AI Series #1] ChatGPT and the OpenAI Developer EcosystemRewatch sessions from RADAR: The Analytics Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
As we look back at 2024, we're highlighting some of our favourite episodes of the year, and with 100 of them to choose from, it wasn't easy! The four guests we'll be recapping with are: Lea Pica - A celebrity in the data storytelling and visualisation space. Richie and Lea cover the full picture of data presentation, how to understand your audience, how to leverage hollywood storytelling and more. Out December 19.Alex Banks - Founder of Sunday Signal. Adel and Alex cover Alex’s journey into AI and what led him to create Sunday Signal, the potential of AI, prompt engineering at its most basic level, chain of thought prompting, the future of LLMs and more. Out December 23.Don Chamberlin - The renowned co-inventor of SQL. Richie and Don explore the early development of SQL, how it became standardized, the future of SQL through NoSQL and SQL++ and more. Out December 26.Tom Tunguz - general Partner at Theory Ventures, a $235m VC firm. Richie and Tom explore trends in generative AI, cloud+local hybrid workflows, data security, the future of business intelligence and data analytics, AI in the corporate sector and more. Out December 30. Your data project doesn't end once you have results. In order to have impact, you need to communicate those results to others. Presentations filled with endless tables and technical jargon can easily become tedious, leading your audience to lose interest or misunderstand your point. Data storytelling provides a solution to this: by creating a narrative around your results you can increase engagement and understanding from your audience. This is an art, and there are so many factors that contribute to visualizing data and creating a compelling story, it can be overwhelming. However, with the right approach, creating data stories can become second nature. In this special episode of DataFramed, we join forces with the Present Beyond Measure podcast to glean the best data presentation practices from one of the leading voices in the space. Lea Pica host of the Founder and Host of the Present Beyond Measure podcast and is a seasoned digital analytics practitioner, social media marketer and blogger with over 11 years of experience building search marketing and digital analytics practices for companies like Scholastic, Victoria’s Secret and Prudential. Present Beyond Measure’s mission is to bring their teachings to the digital marketing and web analytics communities, and empower anyone responsible for presenting data to an audience. In the full episode, Richie and Lea cover the full picture of data presentation, how to understand your audience, leverage hollywood storytelling, data storyboarding and visualization, the use of imagery in presentations, cognitive load management, the use of throughlines in presentations, how to improve your speaking and engagement skills, data visualization techniques in business setting and much more. Links Mentioned in the Show: Present Beyond MeasureLea’s BookConnect with Lea on LinkedinHollywood Storytelling[Course] Data Storytelling Concepts New to DataCamp? Learn on the go using thea href="https://www.datacamp.com/mobile" rel="noopener...
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. Imagine spending millions on data tools only to find you can’t trust the answers they provide. What if different teams define key metrics in different ways? Without a clear, unified approach, chaos reigns, and confidence erodes. What role do data governance and semantic layers play in helping you trust the AI tools you build and the insights you get from your data? Sarah Levy is a seasoned executive with extensive experience in data science, artificial intelligence, and technology leadership. Currently serving as Co-Founder and CEO of Euno since January 2023, Sarah has previously held significant positions, including VP of Data Science and Data Analytics for Real Estate at Pagaya and CTO at Sight Diagnostics, where innovative advancements in blood testing were achieved. With a strong foundation in research and development from roles at Sight Diagnostics and Natural Intelligence, as well as a robust background in cyber security gained from tenure at the IDF, Sarah has consistently driven impactful decision-making and technological advancements throughout their career. Academic credentials include a Master's degree in Condensed Matter Physics from the Weizmann Institute of Science and a Bachelor's degree in Mathematics and Physics from The Hebrew University of Jerusalem. In the episode, Richie and Sarah explore the challenges of data governance, the role of semantic layers in ensuring data trust, the emergence of analytics engineers, the integration of AI in data processes, and much more. Links Mentioned in the Show: EunoConnect with SarahCourse: Responsible AI Data ManagementRelated Episode: How Data Leaders Can Make Data Governance a Priority with Saurabh Gupta, Chief Strategy & Revenue Officer at The Modern Data CompanyRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. AI adoption is not just about flashy innovations or big models. For businesses, it’s about solving real problems and driving measurable outcomes. That means aligning your data infrastructure, navigating compute costs, and understanding where AI adds the most value. How do enterprises prioritize their use cases? What role does hybrid play in scaling securely and efficiently? What’s the next frontier beyond generative AI? As Chief Strategy Officer, Abhas Ricky leads the overall corporate strategy for Cloudera and is responsible for creating the company vision, building the business and customer target operating model, communicating that with key stakeholders via clearly defined OKRs, and executing key transformational initiatives to realize that plan. He’s also tasked with driving growth and innovation and making appropriate build/buy partner decisions, including pricing and packaging, corporate development, and Cloudera’s innovation accelerator to launch new products. Previously, he served as chief of staff and vice president for business transformation at the company. Prior to the Cloudera/Hortonworks merger, he helped scale Hortonworks’ go-to-market efforts as global head of customer innovation and value management. A management consultant by training, he is passionate about driving action and change in the society and has led projects with multiple organizations including the World Economic Forum, Founders of the Future, and other nonprofits. In the episode, Richie and Abhas explore the evolving landscape of data security and governance, the importance of data as an asset, the role of AI in transforming business processes, the challenges of data sprawl, and the significance of hybrid AI solutions, and much more. Links Mentioned in the Show: ClouderaConnect with AbhasCourse: Understanding Cloud Computing CourseRelated Episode: Aligning AI with Enterprise Strategy with Leon Gordon, CEO at Onyx DataRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. With the EU AI Act coming into effect, the AI industry faces a pivotal moment. This regulation is a landmark step for AI governance and challenges data and AI teams to rethink their approach to AI development and deployment. How will this legislation influence the way AI systems are built and used? What are the key compliance requirements that organizations need to be aware of? And how can companies balance regulatory obligations with the drive for innovation and growth? Dan Nechita led the technical negotiations for the EU Artificial Intelligence Act on behalf of the European Parliament. For the 2019-2024 mandate, besides artificial intelligence, he focused on digital regulation, security and defense, and the transatlantic partnership as Head of Cabinet for Dragos Tudorache, MEP. Previously, he was a State Counselor for the Romanian Prime Minister with a mandate on e-governance, digitalization, and cybersecurity. He worked at the World Security Institute (the Global Zero nuclear disarmament initiative); at the Brookings Institution Center of Executive Education; as a graduate teaching assistant at the George Washington University; at the ABC News Political Unit; and as a research assistant at the Arnold A. Saltzman Institute of War and Peace at Columbia. He is an expert project evaluator for the European Commission and a member of expert AI working groups with the World Economic Forum and the United Nations. Dan is a graduate of the George Washington University (M.A.) and Columbia University in the City of New York (B.A.). In the episode, Adel and Dan explore the EU AI Act's significance, risk classification frameworks, organizational compliance strategies, the intersection with existing regulations, AI literacy requirements, and the future of AI legislation, and much more. Links Mentioned in the Show: The EU AI ActConnect with DanCourse: Understanding the EU AI ActRelated Episode: Guardrails for the Future of AI with Viktor Mayer-Schönberger, Professor of Internet Governance and Regulation at the University of OxfordRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business
By now, many of us are convinced that generative AI chatbots like ChatGPT are useful at work. However, many executives are rightfully worried about the risks from having business and customer conversations recorded by AI chatbot platforms. Some privacy and security-conscious organizations are going so far as to block these AI platforms completely. For organizations such as EY, a company that derives value from its intellectual property, leaders need to strike a balance between privacy and productivity. John Thompson runs the department for the ideation, design, development, implementation, & use of innovative Generative AI, Traditional AI, & Causal AI solutions, across all of EY's service lines, operating functions, geographies, & for EY's clients. His team has built the world's largest, secure, private LLM-based chat environment. John also runs the Marketing Sciences consultancy, advising clients on monetization strategies for data. He is the author of four books on data, including "Data for All' and "Causal Artificial Intelligence". Previously, he was the Global Head of AI at CSL Behring, an Adjunct Professor at Lake Forest Graduate School of Management, and an Executive Partner at Gartner. In the episode, Richie and John explore the adoption of GenAI at EY, data privacy and security, GenAI use cases and productivity improvements, GenAI for decision making, causal AI and synthetic data, industry trends and predictions and much more. Links Mentioned in the Show: Azure OpenAICausality by Judea Pearl[Course] AI EthicsRelated Episode: Data & AI at Tesco with Venkat Raghavan, Director of Analytics and Science at TescoCatch John talking about AI Maturity this SeptemberRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Trust is the foundation of any relationship, whether it's between friends or in business. But what happens when the entity you're asked to trust isn't human, but AI? How do you ensure that the AI systems you're developing are not only effective but also trustworthy? In a world where AI is increasingly making decisions that impact our lives, how can we distinguish between systems that genuinely serve our interests and those that might exploit our data? Bruce Schneier is an internationally renowned security technologist, called a “security guru” by The Economist. He is the author of over one dozen books—including his latest, A Hacker’s Mind—as well as hundreds of articles, essays, and academic papers. His influential newsletter “Crypto-Gram” and his blog “Schneier on Security” are read by over 250,000 people. He has testified before Congress, is a frequent guest on television and radio, has served on several government committees, and is regularly quoted in the press. Schneier is a fellow at the Berkman Klein Center for Internet & Society at Harvard University; a Lecturer in Public Policy at the Harvard Kennedy School; a board member of the Electronic Frontier Foundation and AccessNow; and an Advisory Board Member of the Electronic Privacy Information Center and VerifiedVoting.org. He is the Chief of Security Architecture at Inrupt, Inc. In the episode, Richie and Bruce explore the definition of trust, the difference between trust and trustworthiness, how AI mimics social trust, AI and deception, the need for public non-profit AI to counterbalance corporate AI, monopolies in tech, understanding the application and potential consequences of AI misuse, AI regulation, the positive potential of AI, why AI is a political issue and much more. Links Mentioned in the Show: Schneier on SecurityBooks by Bruce[Course] AI EthicsRelated Episode: Building Trustworthy AI with Alexandra Ebert, Chief Trust Officer at MOSTLY AISign up to RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Everything in the world has a price, including improving and scaling your data and AI functions. That means that at some point someone will question the ROI of your projects, and often, these projects will be looked at under the lens of monetization. But how do you ensure that what you’re working on is not only providing value to the business but also creating financial gain? What conditions need to be met to prove your project's success and turn value into cash? Vin Vashishta is the author of ‘From Data to Profit’ (Wiley), the playbook for monetizing data and AI. He built V-Squared from client 1 to one of the oldest data and AI consulting firms. For the last eight years, he has been recognized as a data and AI thought leader. Vin is a LinkedIn Top Voice and Gartner Ambassador. His background spans over 25 years in strategy, leadership, software engineering, and applied machine learning. Dr. Tiffany Perkins-Munn is on a mission to bring research, analytics, and data science to life. She earned her Ph.D. in Social-Personality Psychology with an interdisciplinary focus on Advanced Quantitative Methods. Her insights are the subject of countless lectures on psychology, statistics, and their real-world applications. As the Head of Data and Analytics for the innovative CDAO organization at J.P. Morgan Chase, her knack involves unraveling complex business problems through operational enhancements, augmented financials, and intuitive recruiting. After over two decades in the industry, she consistently forges robust relationships across the corporate spectrum, becoming one of the Top 10 Finalists in the Merrill Lynch Global Markets Innovation Program. In the episode, Richie, Vin, and Tiffany explore the challenges of monetizing data and AI projects, including how technical, organizational, and strategic factors affect your input, the importance of aligning technical and business objectives to keep outputs focused on core business goals, how to assess your organization's data and AI maturity, examples of high data maturity businesses, data security and compliance, quick wins in data transformation and infrastructure, why long-term vision and strategy matter, and much more. Links Mentioned in the Show: Connect with Tiffany on LinkedinConnect with Vin on LinkedinVin’s Website[Course] Data Governance Concepts Related Episode: Scaling Enterprise Analytics with Libby Duane Adams, Chief Advocacy Officer and Co-Founder of Alteryx New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Rapid change seems to be the new norm within the data and AI space, and due to the ecosystem constantly changing, it can be tricky to keep up. Fortunately, any self-respecting venture capitalist looking into data and AI will stay on top of what’s changing and where the next big breakthroughs are likely to come from. We all want to know which important trends are emerging and how we can take advantage of them, so why not learn from a leading VC. Tomasz Tunguz is a General Partner at Theory Ventures, a $235m early-stage venture capital firm. He blogs sat tomtunguz.com & co-authored Winning with Data. He has worked or works with Looker, Kustomer, Monte Carlo, Dremio, Omni, Hex, Spot, Arbitrum, Sui & many others. He was previously the product manager for Google's social media monetization team, including the Google-MySpace partnership, and managed the launches of AdSense into six new markets in Europe and Asia. Before Google, Tunguz developed systems for the Department of Homeland Security at Appian Corporation. In the episode, Richie and Tom explore trends in generative AI, the impact of AI on professional fields, cloud+local hybrid workflows, data security, and changes in data warehousing through the use of integrated AI tools, the future of business intelligence and data analytics, the challenges and opportunities surrounding AI in the corporate sector. You'll also get to discover Tom's picks for the hottest new data startups. Links Mentioned in the Show: Tom’s BlogTheory VenturesArticle: What Air Canada Lost In ‘Remarkable’ Lying AI Chatbot Case[Course] Implementing AI Solutions in BusinessRelated Episode: Making Better Decisions using Data & AI with Cassie Kozyrkov, Google's First Chief Decision ScientistSign up to RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Databases are ubiquitous, and you don’t need to be a data practitioner to know that all data everywhere is stored in a database—or is it? While the majority of data around the world lives in a database, the data that helps run the heart of our operating systems—the core functions of our computers— is not stored in the same place as everywhere else. This is due to database storage sitting ‘above’ the operating system, requiring the OS to run before the databases can be used. But what if the OS was built ‘on top’ of a database? What difference could this fundamental change make to how we use computers? Mike Stonebraker is a distinguished computer scientist known for his foundational work in database systems, he is also currently CTO & Co-Founder At DBOS. His extensive career includes significant contributions through academic prototypes and commercial startups, leading to the creation of several pivotal relational database companies such as Ingres Corporation, Illustra, Paradigm4, StreamBase Systems, Tamr, Vertica, and VoltDB. Stonebraker's role as chief technical officer at Informix and his influential research earned him the prestigious 2014 Turing Award. Stonebraker's professional journey spans two major phases: initially at the University of California, Berkeley, focusing on relational database management systems like Ingres and Postgres, and later, from 2001 at the Massachusetts Institute of Technology (MIT), where he pioneered advanced data management techniques including C-Store, H-Store, SciDB, and DBOS. He remains a professor emeritus at UC Berkeley and continues to influence as an adjunct professor at MIT’s Computer Science and Artificial Intelligence Laboratory. Stonebraker is also recognized for his editorial work on the book "Readings in Database Systems." In the episode, Richie and Mike explore the the success of PostgreSQL, the evolution of SQL databases, the shift towards cloud computing and what that means in practice when migrating to the cloud, the impact of disaggregated storage, software and serverless trends, the role of databases in facilitating new data and AI trends, DBOS and it’s advantages for security, and much more. Links Mentioned in the Show: DBOSPaper: What Goes Around Comes Around[Course] Understanding Cloud ComputingRelated Episode: Scaling Enterprise Analytics with Libby Duane Adams, Chief Advocacy Officer and Co-Founder of AlteryxRewatch sessions from RADAR: The Analytics Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Generative AI has made a mark everywhere, including BI platforms, but how can you combine AI and BI together? What effects can this have across organizations? With constituent aspects such as data quality, your AI strategy, and the specific use-case you’re trying to solve, it’s important to get the full picture and tread with intent. What are the subtleties that we need to get right in order for this marriage to work to its full potential? Nick Magnuson is the Head of AI at Qlik, executing the organization’s AI strategy, solution development, and innovation. Prior to Qlik, Nick was the CEO of Big Squid, which was acquired by Qlik in 2021. Nick has previously held executive roles in customer success, product, and engineering in the field of machine learning and predictive analytics. As a practitioner in this field for over 20 years, Nick has published original research in these areas, as well as cognitive bias and other quantitative topics. He has also served as an advisor to other analytics platforms and start-ups. A long-time investment professional, Nick continues to hold his Chartered Financial Analyst designation and is a past member of the Chicago Quantitative Alliance and Society of Quantitative Analysts. In the episode, Richie and Nick explore what Qlik offers, including products like Sense and Staige, how Staige uses AI to enhance customer capabilities, use cases of generative AI, advice on data privacy and security when using AI, data quality and its effect on the success of AI tools, AI strategy and leadership, how data roles are changing and the emergence of new positions, and much more.
Links Mentioned in the Show: QlikQlik StaigeQlik Sense[Skill Track] AI FundamentalsRelated Episode: Adapting to the AI Era with Jason Feifer, Editor in Chief of Entrepreneur MagazineSign up to RADAR: The Analytics Edition
New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business
One of the most immediate needs to come out of the generative AI boom has been the need for guardrails and governmental regulation of AI technologies. Most of the work already completed in the AI space has been industry-led, with large organizations pushing AI forward to improve their efficiency as businesses and to create new avenues for revenue. This focus on industry and revenue can potentially create more inequality in the world, with companies not interested in the negative effects of AI being driven by profit, towards profit. To combat this, the UN has set up an AI Advisory Board, with members from different nationalities, backgrounds and expertises to ensure that AI is for all, and not just for profit. In this episode, we speak to two members of the board. Ian Bremmer is a political scientist who helps business leaders, policy makers, and the general public make sense of the world around them. He is president and founder of Eurasia Group, the world's leading political risk research and consulting firm, and GZERO Media, a company dedicated to providing intelligent and engaging coverage of international affairs. Ian is credited with bringing the craft of political risk to financial markets, creating Wall Street's first global political risk index (GPRI), and for establishing political risk as an academic discipline. His definition of emerging markets— "those countries where politics matters at least as much as economics for market outcomes”—has become an industry standard. “G-Zero,” his term for a global power vacuum in which no country is willing and able to set the international agenda, is widely used by policymakers and thought leaders. A prolific writer, Ian is the author of eleven books, including two New York Times bestsellers, “Us vs Them: The Failure of Globalism” which examines the rise of populism across the world, and his latest book “The Power of Crisis: How Three Threats—and Our Response—Will Change the World” which details a trio of looming global crises (health emergencies, climate change, and technological revolution) and outlines how governments, corporations, and concerned citizens can use these crises to create global prosperity and opportunity. Jimena Viveros currently serves as the Chief of Staff and Head Legal Advisor to Justice Loretta Ortiz at the Mexican Supreme Court. Her prior roles include national leadership positions at the Federal Judicial Council, the Ministry of Security, and the Ministry of Finance, where she held the position of Director General. Jimena is a lawyer and AI expert, and possesses a broad and diverse international background. She is in the final stages of completing her Doctoral thesis, which focuses on the impact of AI and autonomous weapons on international peace and security law and policy, providing concrete propositions to achieve global governance from diverse legal perspectives. Her extensive work in AI and other legal domains has been widely published and recognized. In the episode, Richie, Ian and Jimena cover what the UN's AI Advisory Body was set up for, the opportunities and risks of AI, how AI impacts global inequality, key principles of AI governance, the implementation of that governance, the future of AI in politics and global society, and much more. Links Mentioned in the Show: UN Interim Report: Governing AI for HumanityAI for Sustainable Development GoalsThe Power of Crisis: How Three Threats – and Our Response – Will Change the World by Ian Bremmera href="https://www.weforum.org/agenda/2024/01/davos-2024-sam-altman-on-the-future-of-ai/" rel="noopener noreferrer"