talk-data.com talk-data.com

Topic

SQL

Structured Query Language (SQL)

database_language data_manipulation data_definition programming_language

233

tagged

Activity Trend

107 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: Data Engineering Podcast ×

Summary The core to providing your users with excellent service is to understand them and provide a personalized experience. Unfortunately many sites and applications take that to the extreme and collect too much information. In order to make it easier for developers to build customer profiles in a way that respects their privacy Serge Huber helped to create the Apache Unomi framework as an open source customer data platform. In this episode he explains how it can be used to build rich and useful profiles of your users, the system architecture that powers it, and some of the ways that it is being integrated into an organization’s broader data ecosystem.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Serge Huber about Apache Unomi, an open source customer data platform designed to manage customers, leads and visitors data and help personalize customers experiences

Interview

Introduction How did you get involved in the area of data management? Can you describe what Unomi is and the story behind it? What are the goals and target use cases of Unomi? What are the aspects of collecting and aggregating profile information that present challenges to developers?

How does the design of Unomi reduce that burden?

How does the focus of Unomi compare to systems such as Segment/Rudderstack or Optimizely for collecting user interactions and applying personalization? How does Unomi fit in the architecture of an application or data infrastructure? Can you describe how Unomi itself is architected?

How have the goals and design of the project changed or evolved since it started? What are some of the most complex or challenging engineering projects that you have worked through?

Can you describe the wo

Summary Hiring data professionals is challenging for a multitude of reasons, and as with every interview process there is a potential for bias to creep in. Tim Freestone founded Alooba to provide a more stable reference point for evaluating candidates to ensure that you can make more informed comparisons based on their actual knowledge. In this episode he explains how Alooba got started, how it is being used in the interview process for data oriented roles, and how it can also provide visibility into your organizations overall data literacy. The whole process of hiring is an important organizational skill to cultivate and this is an interesting exploration of the specific challenges involved in finding data professionals.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Tim Freestone about Alooba, an assessment platform for evaluating data and analytics candidates to improve hiring outcomes for data roles.

Interview

Introduction How did you get involved in the area of data management? Can you describe what Alooba is and the story behind it? What are the main goals that you are trying to achieve with Alooba? What are the main challenges that employers and candidates face when navigating their respective roles in the hiring process?

What are some of the difficulties that are specific to data oriented roles?

What are some of the complexities involved in designing a user experience that is positive and productive for both candidates and companies? What are some strategies that you have developed for establishing a fair and consistent baseline of skills to ensure consistent comparison across candidates? One of the problems that comes from test-based skills assessment is the implicit bias towa

Summary A/B testing and experimentation are the most reliable way to determine whether a change to your product will have the desired effect on your business. Unfortunately, being able to design, deploy, and validate experiments is a complex process that requires a mix of technical capacity and organizational involvement which is hard to come by. Chetan Sharma founded Eppo to provide a system that organizations of every scale can use to reduce the burden of managing experiments so that you can focus on improving your business. In this episode he digs into the technical, statistical, and design requirements for running effective experiments and how he has architected the Eppo platform to make the process more accessible to business and data professionals.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Chetan Sharma about Eppo, a platform for building A/B experiments that are easier to manage

Interview

Introduction How did you get involved in the area of data management? Can you describe what Eppo is and the story behind it? What are some examples of the kinds of experiments that teams and organizations might want to conduct? What are the points of friction that What are the steps involved in designing, deploying, and analyzing the outcomes of an A/B experiment?

What are some of the statistical errors that are common when conducting an experiment?

What are the design and UX principles that you have focused on in Eppo to improve the workflow of building and analyzing experiments? Can you describe the system design of the Eppo platform?

What are the services or capabilities external to Eppo that are required for it to be effective? What are the integration points for adding Eppo to an organization’s existing platform?

B

Summary The modern data stack has been gaining a lot of attention recently with a rapidly growing set of managed services for different stages of the data lifecycle. With all of the available options it is possible to run a scalable, production grade data platform with a small team, but there are still sharp edges and integration challenges to work through. Peter Fishman and Dan Silberman experienced these difficulties firsthand and created Mozart Data to provide a single, easy to use option for getting started with the modern data stack. In this episode they explain how they designed a user experience to make working with data more accessibly by organizations without a data team, while allowing for more advanced users to build out more complex workflows. They also share their thoughts on the modern data ecosystem and how it improves the availability of analytics for companies of all sizes.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Peter Fishman and Dan Silberman about Mozart Data and how they are building a unified experience for the modern data stack

Interview

Introduction How did you get involved in the area of data management? Can you describe what Mozart Data is and the story behind it? The promise of the "modern data stack" is that it’s all delivered as a service to make it easier to set up. What are the missing pieces that make something like Mozart necessary? What are the main workflows or industries that you are focusing on? Who are the main personas that you are building Mozart for?

How has that combination of user persona and industry focus informed your decisions around feature priorities and user experience?

Can you describe how you have architected the Mozart platform?

How have you approached the bu

Summary The data that you have access to affects the questions that you can answer. By using external data sources you can drastically increase the range of analysis that is available to your organization. The challenge comes in all of the operational aspects of finding, accessing, organizing, and serving that data. In this episode Mark Hookey discusses how he and his team at Demyst do all of the DataOps for external data sources so that you don’t have to, including the systems necessary to organize and catalog the various collections that they host, the various serving layers to provide query interfaces that match your platform, and the utility of having a single place to access a multitude of information. If you are having trouble answering questions for your business with the data that you generate and collect internally, then it is definitely worthwhile to explore the information available from external sources.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Mark Hookey about Demyst Data, a platform for operationalizing external data

Interview

Introduction How did you get involved in the area of data management? Can you describe what Demyst is and the story behind it?

What are the services and systems that you provide for organizations to incorporate external sources in their data workflows? Who are your target customers?

What are some examples of data sets that an organization might want to use in their analytics?

How are these different from SaaS data that an organization might integrate with tools such as Stitcher and Fivetran?

What are some of the challenges that are introduced by working with these external data sets?

If an organization isn’t using Demyst what are some

Summary One of the perennial challenges posed by data lakes is how to keep them up to date as new data is collected. With the improvements in streaming engines it is now possible to perform all of your data integration in near real time, but it can be challenging to understand the proper processing patterns to make that performant. In this episode Ori Rafael shares his experiences from Upsolver and building scalable stream processing for integrating and analyzing data, and what the tradeoffs are when coming from a batch oriented mindset.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Ori Rafael about strategies for building stream and batch processing patterns for data lake analytics

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of the state of the market for data lakes today?

What are the prevailing architectural and technological patterns that are being used to manage these systems?

Batch and streaming systems have been used in various combinations since the early days of Hadoop. The Lambda architecture has largely been abandoned, so what is the answer for today’s data lakes? What are the challenges presented by streaming approaches to data transformations?

The batch model for processing is intuitive despite its latency problems. What are the benefits that it provides?

The core concept for data orchestration is the DAG. How does that manifest in a streaming context? In batch processing idempotent/immutable datasets are created by re-running the entire pipeline when logic changes need to be made. Given that there is no definitive start or end of a stream, what are the options for amending logical errors in transformations? What are some of the da

Summary The technology for scaling storage and processing of data has gone through massive evolution over the past decade, leaving us with the ability to work with massive datasets at the cost of massive complexity. Nick Schrock created the Dagster framework to help tame that complexity and scale the organizational capacity for working with data. In this episode he shares the journey that he and his team at Elementl have taken to understand the state of the ecosystem and how they can provide a foundational layer for a holistic data platform.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform and blazing fast NVMe storage there’s nothing slowing you down. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Nick Schrock about the evolution of Dagster and its path forward

Interview

Introduction How did you get involved in the area of data management? Can you describe what Dagster is and the story behind it? How has the project and community changed/evolved since we last spoke 2 years ago?

How has the experience of the past 2 years clarified the challenges and opportunities that exist in the data ecosystem?

What do you see as the foundational vs transient complexities that are germane to the industry?

One of the emerging ideas in Dagster is the "software defined data asset" as the central entity in the framework. How has that shifted the way that engineers approach pipeline design and composition?

How did that conceptual shift inform the accompanying refactor of the core principles in the framework? (jobs, ops, graphs)

One of the powerful elements of the Dagster framework is the investment in rich metadata as a foundational principle. What are the opportunities for integrating and extending that context throughout the rest of an organizations data platform?

What do you see as the potential for efforts such as OpenLineage and OpenMetadata to allow for other compone

Summary The most important gauge of success for a data platform is the level of trust in the accuracy of the information that it provides. In order to build and maintain that trust it is necessary to invest in defining, monitoring, and enforcing data quality metrics. In this episode Michael Harper advocates for proactive data quality and starting with the source, rather than being reactive and having to work backwards from when a problem is found.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Michael Harper about definitions of data quality and where to define and enforce it in the data platform

Interview

Introduction How did you get involved in the area of data management? What is your definition for the term "data quality" and what are the implied goals that it embodies?

What are some ways that different stakeholders and participants in the data lifecycle might disagree about the definitions and manifestations of data quality?

The market for "data quality tools" has been growing and gaining attention recently. How would you categorize the different approaches taken by open source and commercial options in the ecosystem?

What are the tradeoffs that you see in each approach? (e.g. data warehouse as a chokepoint vs quality checks on extract)

What are the difficulties that engineers and stakeholders encounter when identifying and defining information that is necessary to identify issues in their workflows? Can you describe some examples of adding data quality checks to the beginning stages of a data workflow and the kinds of issues that can be identified?

What are some ways that quality and observability metrics can be aggregated across multiple pipeline stages to identify more complex issues?

In application observa

Summary A significant source of friction and wasted effort in building and integrating data management systems is the fragmentation of metadata across various tools. After experiencing the impacts of fragmented metadata and previous attempts at building a solution Suresh Srinivas and Sriharsha Chintalapani created the OpenMetadata project. In this episode they share the lessons that they have learned through their previous attempts and the positive impact that a unified metadata layer had during their time at Uber. They also explain how the OpenMetadat project is aiming to be a common standard for defining and storing metadata for every use case in data platforms and the ways that they are architecting the reference implementation to simplify its adoption. This is an ambitious and exciting project, so listen and try it out today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Sriharsha Chintalapani and Suresh Srinivas about OpenMetadata, an open standard for metadata and a reference implementation for a central metadata store

Interview

Introduction How did you get involved in the area of data management? Can you describe what the OpenMetadata project is and the story behind it?

What are the goals of the project?

What are the common challenges faced by engineers and data practitioners in organizing the metadata for their systems? What are the capabilities that a centralized and holis

Summary Business intelligence is often equated with a collection of dashboards that show various charts and graphs representing data for an organization. What is overlooked in that characterization is the level of complexity and effort that are required to collect and present that information, and the opportunities for providing those insights in other contexts. In this episode Telmo Silva explains how he co-founded ClicData to bring full featured business intelligence and reporting to every organization without having to build and maintain that capability on their own. This is a great conversation about the technical and organizational operations involved in building a comprehensive business intelligence system and the current state of the market.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Telmo Silva about ClicData,

Interview

Introduction How did you get involved in the area of data management? Can you describe what ClicData is and the story behind it? How would you characterize the current state of the market for business intelligence?

What are the systems/capabilities that are required to run a full-featured BI system?

What are the challenges that businesses face in developing in-house capacity for business intelligence? Can you describe how the ClicData platform is architected?

How has it changed or evolved since you first began working on it?

How are you approaching schema design and evolution in the storage layer? How do you handle questions of data security/privacy/regulations given that you are storing the information on behalf of the business? In your work with clients what are some of the challenges that businesses are facing when attempting to answer questions and gain insights from their data in a rep

Summary The precursor to widespread adoption of cloud data warehouses was the creation of customer data platforms. Acting as a centralized repository of information about how your customers interact with your organization they drove a wave of analytics about how to improve products based on actual usage data. A natural outgrowth of that capability is the more recent growth of reverse ETL systems that use those analytics to feed back into the operational systems used to engage with the customer. In this episode Tejas Manohar and Rachel Bradley-Haas share the story of their own careers and experiences coinciding with these trends. They also discuss the current state of the market for these technological patterns and how to take advantage of them in your own work.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Go to dataengineeringpodcast.com/montecarlo and start trusting your data with Monte Carlo today! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Rachel Bradley-Haas and Tejas Manohar about the combination of operational analytics and the customer data platform

Interview

Introduction How did you get involved in the area of data management? Can we start by discussing what it means to have a "customer data platform"? What are the challenges that organizations face in establishing a unified view of their customer interactions?

How do the presence of multiple product lines impact the ability to understand the relationship with the customer?

We have been building data warehouses and business intelligence systems for decades. How does the idea of a CDP differ from the approaches of those previous generations? A recent outgrowth of the focus on creating a CDP is the introduction of "operational analytics", which was initially termed "reverse ETL". What are your opinions on the semantics and importance of these names?

What is the relationship between a CDP and operational analytics? (can you have one without the other?)

How have the capabilities

Summary The perennial question of data warehousing is how to model the information that you are storing. This has given rise to methods as varied as star and snowflake schemas, data vault modeling, and wide tables. The challenge with many of those approaches is that they are optimized for answering known questions but brittle and cumbersome when exploring unknowns. In this episode Ahmed Elsamadisi shares his journey to find a more flexible and universal data model in the form of the "activity schema" that is powering the Narrator platform, and how it has allowed his customers to perform self-service exploration of their business domains without being blocked by schema evolution in the data warehouse. This is a fascinating exploration of what can be done when you challenge your assumptions about what is possible.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Ahmed Elsamadisi about Narrator, a platform to enable anyone to go from question to data-driven decision in minutes

Interview

Introduction How did you get involved in the area of data management? Can you describe what Narrator is and the story behind it? What are the challenges that you have seen organizations encounter when attempting to make analytics a self-serve capability? What are the use cases that you are focused on? How does Narrator fit within the data workflows of an organization? How is the Narrator platform implemented?

How has the design and focus of the technology evolved since you first started working on Narrator?

The core element of the analyses that you are building is the "activity schema". Can you describe the design process that led you to that format?

What are the challenges that are posed by more widely used modeling techniques such as star/s

Summary Streaming data systems have been growing more capable and flexible over the past few years. Despite this, it is still challenging to build reliable pipelines for stream processing. In this episode Eric Sammer discusses the shortcomings of the current set of streaming engines and how they force engineers to work at an extremely low level of abstraction. He also explains why he started Decodable to address that limitation and the work that he and his team have done to let data engineers build streaming pipelines entirely in SQL.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Eric Sammer about Decodable, a platform for simplifying the work of building real-time data pipelines

Interview

Introduction How did you get involved in the area of data management? Can you describe what Decodable is and the story behind it? Who are the target users, and how has that focus informed your prioritization of features at launch? What are the complexities that data engineers encounter when building pipelines on streaming systems? What are the distributed systems concepts and design optimizations that are often skipped over or misunderstood by engineers who are using them? (e.g. backpressure, exactly once semantics, isolation levels, etc.)

How do those mismatches in understanding and expectation impact the correctness and reliability of the workflows that they are building?

Can you describe how y

Summary The market for business intelligence has been going through an evolutionary shift in recent years. One of the driving forces for that change has been the rise of analytics engineering powered by dbt. Lightdash has fully embraced that shift by building an entire open source business intelligence framework that is powered by dbt models. In this episode Oliver Laslett describes why dashboards aren’t sufficient for business analytics, how Lightdash promotes the work that you are already doing in your data warehouse modeling with dbt, and how they are focusing on bridging the divide between data teams and business teams and the requirements that they have for data workflows.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Oliver Laslett about Lightdash, an open source business intelligence system powered by your dbt models

Interview

Introduction How did you get involved in the area of data management? Can you describe what Lightdash is and the story behind it?

What are the main goals of the project? Who are the target users, and how has that profile informed your feature priorities?

Business intelligence is a market that has gone through several generational shifts, with products targeting numerous personas and purposes. What are the capabilities that make Lightdash stand out from the other options? Can you describe how Lightdash is architected?

How have the design and goals of the system changed or evolved since you first began working on it? What have been the most challenging engineering problems that you have dealt with?

How does the approach that you are taking with Lightdash compare to systems such as Transform and Metriql that aim to provide a dedicated metrics layer? Can you describe the workflow for som

Summary The focus of the past few years has been to consolidate all of the organization’s data into a cloud data warehouse. As a result there have been a number of trends in data that take advantage of the warehouse as a single focal point. Among those trends is the advent of operational analytics, which completes the cycle of data from collection, through analysis, to driving further action. In this episode Boris Jabes, CEO of Census, explains how the work of synchronizing cleaned and consolidated data about your customers back into the systems that you use to interact with those customers allows for a powerful feedback loop that has been missing in data systems until now. He also discusses how Census makes that synchronization easy to manage, how it fits with the growth of data quality tooling, and how you can start using it today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Boris Jabes about Census and the growing category of operational analytics

Interview

Introduction How did you get involved in the area of data management? Can you describe what Census is and the story behind it? The terms "reverse ETL" and "operational analytics" have started being used for similar, and often interchangeable, purposes. What are your thoughts on the semantic and concrete differences between these phrases? What are the motivating factors for adding operational analytics or "data activation" to a

Summary The binding element of all data work is the metadata graph that is generated by all of the workflows that produce the assets used by teams across the organization. The DataHub project was created as a way to bring order to the scale of LinkedIn’s data needs. It was also designed to be able to work for small scale systems that are just starting to develop in complexity. In order to support the project and make it even easier to use for organizations of every size Shirshanka Das and Swaroop Jagadish founded Acryl Data. In this episode they discuss the recent work that has been done by the community, how their work is building on top of that foundation, and how you can get started with DataHub for your own work to manage data discovery today. They also share their ambitions for the near future of adding data observability and data quality management features.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Your host is Tobias Macey and today I’m interviewing Shirshanka Das and Swaroop Jagadish about Acryl Data, the company driving the open source metadata project DataHub for powering data discovery, data observability and federated data governance.

Interview

Introduction How did you get involved in the area of data management? Can you describe what Acryl Data is and the story behind it? How has your experience of building and running DataHub at LinkedIn informed your product direction for Acryl?

What are some lessons that your co-founder Swaroop has contributed from his experience at AirBnB?

The data catalog/discovery/quality market has become very active over the past year. What is your perspective on the market, and what are the gaps that are not yet bei

Summary Organizations of all sizes are striving to become data driven, starting in earnest with the rise of big data a decade ago. With the never-ending growth in data sources and methods for aggregating and analyzing them, the use of data to direct the business has become a requirement. Randy Bean has been helping enterprise organizations define and execute their data strategies since before the age of big data. In this episode he discusses his experiences and how he approached the work of distilling them for his book "Fail Fast, Learn Faster". This is an entertaining and enlightening exploration of the business side of data with an industry veteran.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Randy Bean about his recent book focusing on the use of big data and AI for informing data driven business leadership

Interview

Introduction How did you get involved in the area of data management? Can you start by discussing the focus of the book and what motivated you to write it?

Who is the intended audience, and how did that inform the tone and content?

Businesses and their officers have been aiming to be "data driven" for years. In your experience, what are the concrete goals that are implied by that term?

What are the barriers that organizations encounter in the pursuit of those goals? How have the success rates (real and imagined) shifted in recent years as the level of sophisticatio

Summary The key to making data valuable to business users is the ability to calculate meaningful metrics and explore them along useful dimensions. Business intelligence tools have provided this capability for years, but they don’t offer a means of exposing those metrics to other systems. Metriql is an open source project that provides a headless BI system where you can define your metrics and share them with all of your other processes. In this episode Burak Kabakcı shares the story behind the project, how you can use it to create your metrics definitions, and the benefits of treating the semantic layer as a dedicated component of your platform.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Your host is Tobias Macey and today I’m interviewing Burak Emre Kabakcı about Metriql, a headless BI and metrics layer for your data stack

Interview

Introduction How did you get involved in the area of data management? Can you describe what Metriql is and the story behind it? What are the characteristics and benefits of a "headless BI" system? What was your motivation to create and open-source Metriql as an independent project outside of your business?

How are you approaching governance and sustainability of the project?

How does Metriql compare to projects such as AirBnB’s Minerva or Transform’s platform? How does the industry/vertical of a business impact their ability to benefit from a metrics layer/headless BI?

What are the limitations to the logical complexity that can be applied to the calculation of a given metric/set of metrics?

Can you describe how Metriql is implemented?

How have the design and goals of the project changed or evolved since you began worki

Summary Transactions are a necessary feature for ensuring that a set of actions are all performed as a single unit of work. In streaming systems this is necessary to ensure that a set of messages or transformations are all executed together across different queues. In this episode Denis Rystsov explains how he added support for transactions to the Redpanda streaming engine. He discusses the use cases for transactions, the different strategies, semantics, and guarantees that they might need to support, and how his implementation ended up improving the performance of bulk write operations. This is an interesting deep dive into the internals of a high performance streaming engine and the details that are involved in building distributed systems.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Denis Rystsov about implementing transactions in the RedPanda streaming engine

Interview

Introduction How did you get involved in the area of data management? Can you quickly recap what RedPanda is and the goals of the project? What are the use cases for transactions in a pub/sub messaging system?

What are the elements of streaming systems that make atomic transactions a complex problem?

What was the motivation for starting down the path of adding transactions to the RedPanda engine?

How did the constraint of supporting the Kafka API influence your implementation strategy for transaction semantics?

Summary Aerospike is a database engine that is designed to provide millisecond response times for queries across terabytes or petabytes. In this episode Chief Strategy Officer, Lenley Hensarling, explains how the ability to process these large volumes of information in real-time allows businesses to unlock entirely new capabilities. He also discusses the technical implementation that allows for such extreme performance and how the data model contributes to the scalability of the system. If you need to deal with massive data, at high velocities, in milliseconds, then Aerospike is definitely worth learning about.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold’s proactive approach to data quality helps data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. Your host is Tobias Macey and today I’m interviewing Lenley Hensarling about Aerospike and building real-time data platforms

Interview

Introduction How did you get involved in the area of data management? Can you describe what Aerospike is and the story behind it?

What are the use cases that it is uniquely well suited for? What are the use cases that you and the Aerospike team are focusing on and how does that influence your focus on priorities of feature development and user experience?

What are the driving factors for building a real-time data platform? How is Aerospike being incorporated in application and data architectures? Can you describe how the Aerospike engine is architected?

How have the design and architecture changed or evolved since it was first created? How have market forces influenced the product priorities and focus?

What are the challenges that end users face when determining how to model their data given a key/value storage interface?

What are the abstrac