talk-data.com talk-data.com

Topic

RAG

Retrieval Augmented Generation (RAG)

ai machine_learning llm

369

tagged

Activity Trend

83 peak/qtr
2020-Q1 2026-Q1

Activities

369 activities · Newest first

Large Language Models (LLMs) are transformative, but static knowledge and hallucinations limit their direct enterprise use. Retrieval-Augmented Generation (RAG) is the standard solution, yet moving from prototype to production is fraught with challenges in data quality, scalability, and evaluation.

This talk argues the future of intelligent retrieval lies not in better models, but in a unified, data-first platform. We'll demonstrate how the Databricks Data Intelligence Platform, built on a Lakehouse architecture with integrated tools like Mosaic AI Vector Search, provides the foundation for production-grade RAG.

Looking ahead, we'll explore the evolution beyond standard RAG to advanced architectures like GraphRAG, which enable deeper reasoning within Compound AI Systems. Finally, we'll show how the end-to-end Mosaic AI Agent Framework provides the tools to build, govern, and evaluate the intelligent agents of the future, capable of reasoning across the entire enterprise.

Graph-based Retrieval-Augmented Generation (GraphRAG) enhances large language models (LLMs) by grounding their responses in structured knowledge graphs, offering more accurate, domain-specific, and explainable outputs. However, many of the graphs used in these pipelines are automatically generated or loosely assembled, and often lack the semantic structure, consistency, and clarity required for reliable grounding. The result is misleading retrieval, vague or incomplete answers, and hallucinations that are difficult to trace or fix.

This hands-on tutorial introduces a practical approach to evaluating and improving knowledge graph quality in GraphRAG applications. We’ll explore common failure patterns, walk through real-world examples, and share a reusable checklist of features that make a graph “AI-ready.” Participants will learn methods for identifying gaps, inconsistencies, and modeling issues that prevent knowledge graphs from effectively supporting LLMs, and apply simple fixes to improve grounding and retrieval performance in their own projects.

Large Language Models (LLMs) are transformative, but static knowledge and hallucinations limit their direct enterprise use. Retrieval-Augmented Generation (RAG) is the standard solution, yet moving from prototype to production is fraught with challenges in data quality, scalability, and evaluation.

This talk argues the future of intelligent retrieval lies not in better models, but in a unified, data-first platform. We'll demonstrate how the Databricks Data Intelligence Platform, built on a Lakehouse architecture with integrated tools like Mosaic AI Vector Search, provides the foundation for production-grade RAG.

Looking ahead, we'll explore the evolution beyond standard RAG to advanced architectures like GraphRAG, which enable deeper reasoning within Compound AI Systems. Finally, we'll show how the end-to-end Mosaic AI Agent Framework provides the tools to build, govern, and evaluate the intelligent agents of the future, capable of reasoning across the entire enterprise.

Retrieval-Augmented Generation (RAG) systems rely heavily on the quality of the retrieval process to generate accurate and contextually relevant outputs. In this 90-minute tutorial, we explore practical techniques to enhance retrieval across three key stages: pre-retrieval, mid-retrieval, and post-retrieval. Participants will learn how to optimize data preparation, query strategies, reranking, and evaluation to significantly improve the performance of RAG systems. A real-world case study will guide attendees through implementing these methods in a complete retrieval workflow.

Summary In this episode of the AI Engineering Podcast Mark Brooker, VP and Distinguished Engineer at AWS, talks about how agentic workflows are transforming database usage and infrastructure design. He discusses the evolving role of data in AI systems, from traditional models to more modern approaches like vectors, RAG, and relational databases. Mark explains why agents require serverless, elastic, and operationally simple databases, and how AWS solutions like Aurora and DSQL address these needs with features such as rapid provisioning, automated patching, geodistribution, and spiky usage. The conversation covers topics including tool calling, improved model capabilities, state in agents versus stateless LLM calls, and the role of Lambda and AgentCore for long-running, session-isolated agents. Mark also touches on the shift from local MCP tools to secure, remote endpoints, the rise of object storage as a durable backplane, and the need for better identity and authorization models. The episode highlights real-world patterns like agent-driven SQL fuzzing and plan analysis, while identifying gaps in simplifying data access, hardening ops for autonomous systems, and evolving serverless database ergonomics to keep pace with agentic development.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData teams everywhere face the same problem: they're forcing ML models, streaming data, and real-time processing through orchestration tools built for simple ETL. The result? Inflexible infrastructure that can't adapt to different workloads. That's why Cash App and Cisco rely on Prefect. Cash App's fraud detection team got what they needed - flexible compute options, isolated environments for custom packages, and seamless data exchange between workflows. Each model runs on the right infrastructure, whether that's high-memory machines or distributed compute. Orchestration is the foundation that determines whether your data team ships or struggles. ETL, ML model training, AI Engineering, Streaming - Prefect runs it all from ingestion to activation in one platform. Whoop and 1Password also trust Prefect for their data operations. If these industry leaders use Prefect for critical workflows, see what it can do for you at dataengineeringpodcast.com/prefect.Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Your host is Tobias Macey and today I'm interviewing Marc Brooker about the impact of agentic workflows on database usage patterns and how they change the architectural requirements for databasesInterview IntroductionHow did you get involved in the area of data management?Can you describe what the role of the database is in agentic workflows?There are numerous types of databases, with relational being the most prevalent. How does the type and purpose of an agent inform the type of database that should be used?Anecdotally I have heard about how agentic workloads have become the predominant "customers" of services like Neon and Fly.io. How would you characterize the different patterns of scale for agentic AI applications? (e.g. proliferation of agents, monolithic agents, multi-agent, etc.)What are some of the most significant impacts on workload and access patterns for data storage and retrieval that agents introduce?What are the categorical differences in that behavior as compared to programmatic/automated systems?You have spent a substantial amount of time on Lambda at AWS. Given that LLMs are effectively stateless, how does the added ephemerality of serverless functions impact design and performance considerations around having to "re-hydrate" context when interacting with agents?What are the most interesting, innovative, or unexpected ways that you have seen serverless and database systems used for agentic workloads?What are the most interesting, unexpected, or challenging lessons that you have learned while working on technologies that are supporting agentic applications?Contact Info BlogLinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links AWS Aurora DSQLAWS LambdaThree Tier ArchitectureVector DatabaseGraph DatabaseRelational DatabaseVector EmbeddingRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodeGraphRAGAI Engineering Podcast EpisodeLLM Tool CallingMCP == Model Context ProtocolA2A == Agent 2 Agent ProtocolAWS Bedrock AgentCoreStrandsLangChainKiroThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Send us a text What if AI could tap into live operational data — without ETL or RAG? In this episode, Deepti Srivastava, founder of Snow Leopard, reveals how her company is transforming enterprise data access with intelligent data retrieval, semantic intelligence, and a governance-first approach. Tune in for a fresh perspective on the future of AI and the startup journey behind it.

We explore how companies are revolutionizing their data access and AI strategies. Deepti Srivastava, founder of Snow Leopard, shares her insights on bridging the gap between live operational data and generative AI — and how it’s changing the game for enterprises worldwide. We dive into Snow Leopard’s innovative approach to data retrieval, semantic intelligence, and governance-first architecture. 04:54 Meeting Deepti Srivastava 14:06 AI with No ETL, no RAG 17:11 Snow Leopard's Intelligent Data Fetching 19:00 Live Query Challenges 21:01 Snow Leopard's Secret Sauce 22:14 Latency 23:48 Schema Changes 25:02 Use Cases 26:06 Snow Leopard's Roadmap 29:16 Getting Started 33:30 The Startup Journey 34:12 A Woman in Technology 36:03 The Contrarian View🔗 LinkedIn: https://www.linkedin.com/in/thedeepti/ 🔗 Website:  https://www.snowleopard.ai/ Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Les RAG sont partout en 2025. Mais entre les vecteurs, les bases de données, les API Python… la plupart des stacks RAG ressemblent à une usine à gaz. Et si on pouvait tout simplifier ? Dans ce talk, Samir montre comment OpenSearch peut couvrir l’ensemble des besoins d’un RAG, sans dépendre de 15 outils différents. Une stack minimaliste, full open source, déployable partout — parfaite pour les équipes qui veulent garder la main sur leurs données. La session se termine avec une démo live d’un moteur de Q&A, prêt à être testé.

At Berlin Buzzwords, industry voices highlighted how search is evolving with AI and LLMs.

  • Kacper Łukawski (Qdrant) stressed hybrid search (semantic + keyword) as core for RAG systems and promoted efficient embedding models for smaller-scale use.
  • Manish Gill (ClickHouse) discussed auto-scaling OLAP databases on Kubernetes, combining infrastructure and database knowledge.
  • André Charton (Kleinanzeigen) reflected on scaling search for millions of classifieds, moving from Solr/Elasticsearch toward vector search, while returning to a hands-on technical role.
  • Filip Makraduli (Superlinked) introduced a vector-first framework that fuses multiple encoders into one representation for nuanced e-commerce and recommendation search.
  • Brian Goldin (Voyager Search) emphasized spatial context in retrieval, combining geospatial data with AI enrichment to add the “where” to search.
  • Atita Arora (Voyager Search) highlighted geospatial AI models, the renewed importance of retrieval in RAG, and the cautious but promising rise of AI agents.

Together, their perspectives show a common thread: search is regaining center stage in AI—scaling, hybridization, multimodality, and domain-specific enrichment are shaping the next generation of retrieval systems.

Kacper Łukawski Senior Developer Advocate at Qdrant, he educates users on vector and hybrid search. He highlighted Qdrant’s support for dense and sparse vectors, the role of search with LLMs, and his interest in cost-effective models like static embeddings for smaller companies and edge apps. Connect: https://www.linkedin.com/in/kacperlukawski/

Manish Gill
Engineering Manager at ClickHouse, he spoke about running ClickHouse on Kubernetes, tackling auto-scaling and stateful sets. His team focuses on making ClickHouse scale automatically in the cloud. He credited its speed to careful engineering and reflected on the shift from IC to manager.
Connect: https://www.linkedin.com/in/manishgill/

André Charton
Head of Search at Kleinanzeigen, he discussed shaping the company’s search tech—moving from Solr to Elasticsearch and now vector search with Vespa. Kleinanzeigen handles 60M items, 1M new listings daily, and 50k requests/sec. André explained his career shift back to hands-on engineering.
Connect: https://www.linkedin.com/in/andrecharton/

Filip Makraduli
Founding ML DevRel engineer at Superlinked, an open-source framework for AI search and recommendations. Its vector-first approach fuses multiple encoders (text, images, structured fields) into composite vectors for single-shot retrieval. His Berlin Buzzwords demo showed e-commerce search with natural-language queries and filters.
Connect: https://www.linkedin.com/in/filipmakraduli/

Brian Goldin
Founder and CEO of Voyager Search, which began with geospatial search and expanded into documents and metadata enrichment. Voyager indexes spatial data and enriches pipelines with NLP, OCR, and AI models to detect entities like oil spills or windmills. He stressed adding spatial context (“the where”) as critical for search and highlighted Voyager’s 12 years of enterprise experience.
Connect: https://www.linkedin.com/in/brian-goldin-04170a1/

Atita Arora
Director of AI at Voyager Search, with nearly 20 years in retrieval systems, now focused on geospatial AI for Earth observation data. At Berlin Buzzwords she hosted sessions, attended talks on Lucene, GPUs, and Solr, and emphasized retrieval quality in RAG systems. She is cautiously optimistic about AI agents and values the event as both learning hub and professional reunion.
Connect: https://www.linkedin.com/in/atitaarora/

Building an AI Agent for Natural Language to SQL Query Execution on Live Databases

This hands-on tutorial will guide participants through building an end-to-end AI agent that translates natural language questions into SQL queries, validates and executes them on live databases, and returns accurate responses. Participants will build a system that intelligently routes between a specialized SQL agent and a ReAct chat agent, implementing RAG for query similarity matching, comprehensive safety validation, and human-in-the-loop confirmation. By the end of this session, attendees will have created a powerful and extensible system they can adapt to their own data sources.

One API to Rule Them All? LiteLLM in Production

Using LiteLLM in a Real-World RAG System: What Worked and What Didn’t

LiteLLM provides a unified interface to work with multiple LLM providers—but how well does it hold up in practice? In this talk, I’ll share how we used LiteLLM in a production system to simplify model access and handle token budgets. I’ll outline the benefits, the hidden trade-offs, and the situations where the abstraction helped—or got in the way. This is a practical, developer-focused session on integrating LiteLLM into real workflows, including lessons learned and limitations. If you’re considering LiteLLM, this talk offers a grounded look at using it beyond simple prototypes.

Kannupriya Kalra and Rory Graves discuss GenAI in Scala with LLM4S, walking through live demos—from basic LLM calls and RAG search to image processing and AI-driven code writing. The talk covers building powerful GenAI-powered Scala applications and tools, with practical guidance on architectures, integration, and scalability.

Summary In this episode of the Data Engineering Podcast Kacper Łukawski from Qdrant about integrating MCP servers with vector databases to process unstructured data. Kacper shares his experience in data engineering, from building big data pipelines in the automotive industry to leveraging large language models (LLMs) for transforming unstructured datasets into valuable assets. He discusses the challenges of building data pipelines for unstructured data and how vector databases facilitate semantic search and retrieval-augmented generation (RAG) applications. Kacper delves into the intricacies of vector storage and search, including metadata and contextual elements, and explores the evolution of vector engines beyond RAG to applications like semantic search and anomaly detection. The conversation covers the role of Model Context Protocol (MCP) servers in simplifying data integration and retrieval processes, highlighting the need for experimentation and evaluation when adopting LLMs, and offering practical advice on optimizing vector search costs and fine-tuning embedding models for improved search quality.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.Your host is Tobias Macey and today I'm interviewing Kacper Łukawski about how MCP servers can be paired with vector databases to streamline processing of unstructured dataInterview IntroductionHow did you get involved in the area of data management?LLMs are enabling the derivation of useful data assets from unstructured sources. What are the challenges that teams face in building the pipelines to support that work?How has the role of vector engines grown or evolved in the past ~2 years as LLMs have gained broader adoption?Beyond its role as a store of context for agents, RAG, etc. what other applications are common for vector databaes?In the ecosystem of vector engines, what are the distinctive elements of Qdrant?How has the MCP specification simplified the work of processing unstructured data?Can you describe the toolchain and workflow involved in building a data pipeline that leverages an MCP for generating embeddings?helping data engineers gain confidence in non-deterministic workflowsbringing application/ML/data teams into collaboration for determining the impact of e.g. chunking strategies, embedding model selection, etc.What are the most interesting, innovative, or unexpected ways that you have seen MCP and Qdrant used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on vector use cases?When is MCP and/or Qdrant the wrong choice?What do you have planned for the future of MCP with Qdrant?Contact Info LinkedInTwitter/XPersonal websiteParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links QdrantKafkaApache OoziNamed Entity RecognitionGraphRAGpgvectorElasticsearchApache LuceneOpenSearchBM25Semantic SearchMCP == Model Context ProtocolAnthropic Contextualized ChunkingCohereThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Building AI Agents with LLMs, RAG, and Knowledge Graphs

This book provides a comprehensive and practical guide to creating cutting-edge AI agents combining advanced technologies such as LLMs, retrieval-augmented generation (RAG), and knowledge graphs. By reading this book, you'll gain a deep understanding of how to design and build AI agents capable of real-world problem solving, reasoning, and action execution. What this Book will help me do Understand the foundations of LLMs, RAG, and knowledge graphs, and how they can be combined to build effective AI agents. Learn techniques to enhance factual accuracy and grounding through RAG pipelines and knowledge graphs. Develop AI agents that integrate planning, reasoning, and live tool usage to solve complex problems. Master the use of Python and popular AI libraries to build scalable AI agent applications. Acquire strategies for deploying and monitoring AI agents in production for reliable operation. Author(s) This book is written by Salvatore Raieli and Gabriele Iuculano, accomplished experts in artificial intelligence and machine learning. Both authors bring extensive professional experience from their work in AI-related fields, particularly in applying innovative AI methods to solve challenging problems. Through their clear and approachable writing style, they aim to make advanced AI concepts accessible to readers at various levels. Who is it for? This book is ideally suited for data scientists, AI practitioners, and technology enthusiasts seeking to deepen their knowledge in building intelligent AI agents. It is perfect for those who already have a foundational understanding of Python and general artificial intelligence concepts. Experienced professionals looking to explore state-of-the-art AI solutions, as well as beginners eager to advance their technical skills, will find this book invaluable.

AI assistants are evolving from simple Q&A bots to intelligent, multimodal, multilingual, and agentic systems capable of reasoning, retrieving, and autonomously acting. In this talk, we’ll showcase how to build a voice-enabled, multilingual, multimodal RAG (Retrieval-Augmented Generation) assistant using Gradio, OpenAI’s Whisper, LangChain, LangGraph, and FAISS. Our assistant will not only process voice and text inputs in multiple languages but also intelligently retrieve information from structured and unstructured data. We’ll demonstrate this with a flight search use case—leveraging a flight database for retrieval and, when necessary, autonomously searching external sources using LangGraph. You will gain practical insights into building scalable, adaptive AI assistants that move beyond static chatbots to autonomous agents that interact dynamically with users and the web.

MongoDB 8.0 in Action, Third Edition

Deliver flexible, scalable, and high-performance data storage that's perfect for AI and other modern applications with MongoDB 8.0 and MongoDB Atlas multi-cloud data platform. In MongoDB 8.0 in Action, Third Edition you'll find comprehensive coverage of the latest version of MongoDB 8.0 and the MongoDB Atlas multi-cloud data platform. Learn to utilize MongoDB’s flexible schema design for data modeling, scale applications effectively using advanced sharding features, integrate full-text and vector-based semantic search, and more. This totally revised new edition delivers engaging hands-on tutorials and examples that put MongoDB into action! In MongoDB 8.0 in Action, Third Edition you'll: Master new features in MongoDB 8.0 Create your first, free Atlas cluster using the Atlas CLI Design scalable NoSQL databases with effective data modeling techniques Master Vector Search for building GenAI-driven applications Utilize advanced search capabilities in MongoDB Atlas, including full-text search Build Event-Driven Applications with Atlas Stream Processing Deploy and manage MongoDB Atlas clusters both locally and in the cloud using the Atlas CLI Leverage the Atlas SQL interface for familiar SQL querying Use MongoDB Atlas Online Archive for efficient data management Establish robust security practices including encryption Master backup and restore strategies Optimize database performance and identify slow queries MongoDB 8.0 in Action, Third Edition offers a clear, easy-to-understand introduction to everything in MongoDB 8.0 and MongoDB Atlas—including new advanced features such as embedded config servers in sharded clusters, or moving an unsharded collection to a different shard. The book also covers Atlas stream processing, full text search, and vector search capabilities for generative AI applications. Each chapter is packed with tips, tricks, and practical examples you can quickly apply to your projects, whether you're brand new to MongoDB or looking to get up to speed with the latest version. About the Technology MongoDB is the database of choice for storing structured, semi-structured, and unstructured data like business documents and other text and image files. MongoDB 8.0 introduces a range of exciting new features—from sharding improvements that simplify the management of distributed data, to performance enhancements that stay resilient under heavy workloads. Plus, MongoDB Atlas brings vector search and full-text search features that support AI-powered applications. About the Book MongoDB 8.0 in Action, Third Edition you’ll learn how to take advantage of all the new features of MongoDB 8.0, including the powerful MongoDB Atlas multi-cloud data platform. You’ll start with the basics of setting up and managing a document database. Then, you’ll learn how to use MongoDB for AI-driven applications, implement advanced stream processing, and optimize performance with improved indexing and query handling. Hands-on projects like creating a RAG-based chatbot and building an aggregation pipeline mean you’ll really put MongoDB into action! What's Inside The new features in MongoDB 8.0 Get familiar with MongoDB’s Atlas cloud platform Utilizing sharding enhancements Using vector-based search technologies Full-text search capabilities for efficient text indexing and querying About the Reader For developers and DBAs of all levels. No prior experience with MongoDB required. About the Author Arek Borucki is a MongoDB Champion, certified MongoDB and MongoDB Atlas administrator with expertise in distributed systems, NoSQL databases, and Kubernetes. Quotes An excellent resource with real-world examples and best practices to design, optimize, and scale modern applications. - Advait Patel, Broadcom Essential MongoDB resource. Covers new features such as full-text search, vector search, AI, and RAG applications. - Juan Roy, Credit Suisse Reflects author’s practical experience and clear teaching style. It’s packed with real-world examples and up-to-date insights. - Rajesh Nair, MongoDB Champion & community leader This book will definitely make you a MongoDB star! - Vinicios Wentz, JP Morgan & Chase Co.

This hands-on tutorial will guide participants through building an end-to-end AI agent that translates natural language questions into SQL queries, validates and executes them on live databases, and returns accurate responses. Participants will build a system that intelligently routes between a specialized SQL agent and a ReAct chat agent, implementing RAG for query similarity matching, comprehensive safety validation, and human-in-the-loop confirmation. By the end of this 4-hour session, attendees will have created a powerful and extensible system they can adapt to their own data sources.

Large Language Models (LLMs) have revolutionized natural language processing, but they come with limitations such as hallucinations and outdated knowledge. Retrieval-Augmented Generation (RAG) is a practical approach to mitigating these issues by integrating external knowledge retrieval into the LLM generation process.

This tutorial will introduce the core concepts of RAG, walk through its key components, and provide a hands-on session for building a complete RAG pipeline. We will also cover advanced techniques, such as hybrid search, re-ranking, ensemble retrieval, and benchmarking. By the end of this tutorial, participants will be equipped with both the theoretical understanding and practical skills needed to build robust RAG pipeline.

Join us to explore the DAG Upgrade Agent. Developed with Google Agent Development Kit and powered by Gemini, the DAG Upgrade Agent uses a rules-based framework to analyze DAG code, identify compatibility issues between core airflow and provider package versions, and generates precise upgrade recommendations and automated code conversions. Perfect for upcoming Airflow 3.0 migrations.

At SAP Business AI, we’ve transformed Retrieval-Augmented Generation (RAG) pipelines into enterprise-grade powerhouses using Apache Airflow. Our Generative AI Foundations Team developed a cutting-edge system that effectively grounds Large Language Models (LLMs) with rich SAP enterprise data. Powering Joule for Consultants, our innovative AI copilot, this pipeline manages the seamless ingestion, sophisticated metadata enrichment, and efficient lifecycle management of over a million structured and unstructured documents. By leveraging Airflow’s Dynamic DAGs, TaskFlow API, XCom, and Kubernetes Event-Driven Autoscaling (KEDA), we achieved unprecedented scalability and flexibility. Join our session to discover actionable insights, innovative scaling strategies, and a forward-looking vision for Pipeline-as-a-Service, empowering seamless integration of customer-generated content into scalable AI workflows