talk-data.com talk-data.com

Topic

Computer Science

programming algorithms data_structures

73

tagged

Activity Trend

9 peak/qtr
2020-Q1 2026-Q1

Activities

73 activities · Newest first

In this episode, Conor and Bryce record live from C++ Under the Sea! We interview Bernhard, Koen, talk about C++26 Reflection and more! Link to Episode 261 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: TwitterAbout the Guests: Bernhard is a senior system software engineer at NVIDIA, where he extends, optimizes and maintains the CUDA Core Compute Libraries (CCCL). Previously, he worked as software engineer among physicists at CERN on real-time and embedded software for the Large Hadron Collider, as well as data layout abstractions for heterogeneous architectures, for which he received a PhD in High Performance Computing from the University of Dresden, Germany. Before, he implemented GPU accelerated simulations and 3D visualizations of industrial machining processes. Since 2022, Bernhard is a voting member of WG21 and his interests span geometry, 3D visualizations, optimization, SIMD, GPU computing, refactoring and teaching C++. Koen is an engineer specializing in high-quality software with a strong mathematical foundation. With a PhD in Computer Science from KU Leuven, his work bridges applied mathematics and performance-critical software engineering. As Team Lead for HMI Software at NV Michel Van de Wiele, he focuses on developing C++/Qt applications for textile production systems, optimizing performance, usability, and cloud integration. Passionate about elegant, efficient solutions, Koen brings deep expertise in numerical methods, system optimization, and software architecture. Show Notes Date Recorded: 2025-10-10 Date Released: 2025-11-21 Thrust DocsCUB LibraryC++26 Reflection ProposalADSP Episode 39: How Steve Jobs Saved Sean ParentParrotParrot on GitHubSean's C++ Under the Sea KeynoteParrot sumIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

In this episode of Data Skeptic's Recommender Systems series, Kyle sits down with Aditya Chichani, a senior machine learning engineer at Walmart, to explore the darker side of recommendation algorithms. The conversation centers on shilling attacks—a form of manipulation where malicious actors create multiple fake profiles to game recommender systems, either to promote specific items or sabotage competitors. Aditya, who researched these attacks during his undergraduate studies at SPIT before completing his master's in computer science with a data science specialization at UC Berkeley, explains how these vulnerabilities emerge particularly in collaborative filtering systems. From promoting a friend's ska band on Spotify to inflating product ratings on e-commerce platforms, shilling attacks represent a significant threat in an industry where approximately 4% of reviews are fake, translating to $800 billion in annual sales in the US alone. The discussion delves deep into collaborative filtering, explaining both user-user and item-item approaches that create similarity matrices to predict user preferences. However, these systems face various shilling attacks of increasing sophistication: random attacks use minimal information with average ratings, while segmented attacks strategically target popular items (like Taylor Swift albums) to build credibility before promoting target items. Bandwagon attacks focus on highly popular items to connect with genuine users, and average attacks leverage item rating knowledge to appear authentic. User-user collaborative filtering proves particularly vulnerable, requiring as few as 500 fake profiles to impact recommendations, while item-item filtering demands significantly more resources. Aditya addresses detection through machine learning techniques that analyze behavioral patterns using methods like PCA to identify profiles with unusually high correlation and suspicious rating consistency. However, this remains an evolving challenge as attackers adapt strategies, now using large language models to generate more authentic-seeming fake reviews. His research with the MovieLens dataset tested detection algorithms against synthetic attacks, highlighting how these concerns extend to modern e-commerce systems. While companies rarely share attack and detection data publicly to avoid giving attackers advantages, academic research continues advancing both offensive and defensive strategies in recommender systems security.

The promise of AI in enterprise settings is enormous, but so are the privacy and security challenges. How do you harness AI's capabilities while keeping sensitive data protected within your organization's boundaries? Private AI—using your own models, data, and infrastructure—offers a solution, but implementation isn't straightforward. What governance frameworks need to be in place? How do you evaluate non-deterministic AI systems? When should you build in-house versus leveraging cloud services? As data and software teams evolve in this new landscape, understanding the technical requirements and workflow changes is essential for organizations looking to maintain control over their AI destiny. Manasi Vartak is Chief AI Architect and VP of Product Management (AI Platform) at Cloudera. She is a product and AI leader with more than a decade of experience at the intersection of AI infrastructure, enterprise software, and go-to-market strategy. At Cloudera, she leads product and engineering teams building low-code and high-code generative AI platforms, driving the company’s enterprise AI strategy and enabling trusted AI adoption across global organizations. Before joining Cloudera through its acquisition of Verta, Manasi was the founder and CEO of Verta, where she transformed her MIT research into enterprise-ready ML infrastructure. She scaled the company to multi-million ARR, serving Fortune 500 clients in finance, insurance, and capital markets, and led the launch of enterprise MLOps and GenAI products used in mission-critical workloads. Manasi earned her PhD in Computer Science from MIT, where she pioneered model management systems such as ModelDB — foundational work that influenced the development of tools like MLflow. Earlier in her career, she held research and engineering roles at Twitter, Facebook, Google, and Microsoft. In the episode, Richie and Manasi explore AI's role in financial services, the challenges of AI adoption in enterprises, the importance of data governance, the evolving skills needed for AI development, the future of AI agents, and much more. Links Mentioned in the Show: ClouderaCloudera Evolve ConferenceCloudera Agent StudioConnect with ManasiCourse: Introduction to AI AgentsRelated Episode: RAG 2.0 and The New Era of RAG Agents with Douwe Kiela, CEO at Contextual AI & Adjunct Professor at Stanford UniversityRewatch RADAR AI  New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

Today, we’re joined by Mark Walker, CEO of Nue, an easy-to-manage, omni-channel quote-to-revenue platform that meets the needs of businesses looking to innovate and manage their customer revenue lifecycles end-to-end. We talk about:

The best people to design software other than computer science gradsExpertise is dead, but experience isn't – and what impacts this hasThe deflationary impact of AI model improvementsPredictions for the pricing structure of AI modelsHow large AI companies will start taking a page out of Amazon's book

In this episode, I sit down with Wendy Turner-Williams, a distinguished tech leader and executive with a deep history at companies like Microsoft and Salesforce. She's of the original minds behind what became Azure Data Factory, among other foundational tech. In this wide-ranging conversation, Wendy charts the trajectory from the early days of the Internet to the current AI-driven hype cycle and looming crisis. She explains how these tools of innovation are now being turned against the workforce and why this technological revolution is fundamentally more disruptive than anything that has come before. This episode is a candid, unfiltered discussion about the real-world impact of AI on jobs, the economy, and our collective future, and a call for leaders to act before it's too late. Timestamps: 00:22 - Catching up: The tough job market and writing new books. 05:49 - Wendy's impressive career history at Microsoft, Salesforce, and Tableau. 06:17 - The origin story of Azure Data Factory and other foundational projects at Microsoft. 09:18 - A personal story about the challenges of being a woman in Big Tech in the early days. 13:02 - A look back at a favorite early-career project: Digitizing physical maps with nascent GPS technology in 2001. 18:11 - The state of the tech industry: "Tech is cannibalizing itself because of AI." 20:31 - The massive, impending shock to the job market and why AI is different from previous industrial revolutions. 27:26 - Why the "human in the loop" is a temporary and misleading solution. 29:55 - Breaking down the numbers: The staggering quantity of white-collar jobs projected to be eliminated. 36:37 - Why leaders are failing to act and conversations are happening behind closed doors without solutions. 38:25 - Discussing potential solutions: Should companies have quotas for their human workforce? 45:21 - The need for "truth tellers" and leaders who are willing to question the current path and drive human-centric transformation. 53:15 - The grim reality for recent graduates with computer science degrees who can't find jobs. 56:22 - The risk of IP hoarding and engineers deliberately crippling systems to protect their jobs. 01:00:20 - Final thoughts: Are we waiting for a "let them eat cake" moment before we see real change?

The manufacturing floor is undergoing a technological revolution with industrial AI at its center. From predictive maintenance to quality control, AI is transforming how products are designed, produced, and maintained. But implementing these technologies isn't just about installing sensors and software—it's about empowering your workforce to embrace new tools and processes. How do you overcome AI hesitancy among experienced workers? What skills should your team develop to make the most of these new capabilities? And with limited resources, how do you prioritize which AI applications will deliver the greatest impact for your specific manufacturing challenges? The answers might be simpler than you think. Barbara Humpton is President and CEO of Siemens Corporation, responsible for strategy and engagement in Siemens’ largest market. Under her leadership, Siemens USA operates across all 50 states and Puerto Rico with 45,000 employees and generated $21.1 billion in revenue in fiscal year 2024. She champions the role of technology in expanding what’s humanly possible and is a strong advocate for workforce development, mentorship, and building sustainable work-life integration. Previously, she was President and CEO of Siemens Government Technologies, leading delivery of Siemens’ products and services to U.S. federal agencies. Before joining Siemens in 2011, she held senior roles at Booz Allen Hamilton and Lockheed Martin, where she oversaw programs in national security, biometrics, border protection, and critical infrastructure, including the FBI’s Next Generation Identification and TSA’s Transportation Workers’ Identification Credential. Olympia Brikis is a seasoned technology and business leader with over a decade of experience in AI research. As the Technology and Engineering Director for Siemens' Industrial AI Research in the U.S., she leads AI strategy, technology roadmapping, and R&D for next-gen AI products. Olympia has a strong track record in developing Generative AI products that integrate industrial and digital ecosystems, driving real-world business impact. She is a recognized thought leader with numerous patents and peer-reviewed publications in AI for manufacturing, predictive analytics, and digital twins. Olympia actively engages with executives, policymakers, and AI practitioners on AI's role in enterprise strategy and workforce transformation. With a background in Computer Science from LMU Munich and an MBA from Wharton, she bridges AI research, product strategy, and enterprise adoption, mentoring the next generation of AI leaders. In the episode, Richie, Barbara, and Olympia explore the transformative power of AI in manufacturing, from predictive maintenance to digital twins, the role of industrial AI in enhancing productivity, the importance of empowering workers with new technology, real-world applications, overcoming AI hesitancy, and much more. Links Mentioned in the Show: Siemens Industrial AI SuiteConnect with Barbara and OlympiaCourse: Implementing AI Solutions in BusinessRelated Episode: Master Your Inner Game to Avoid Burnout with Klaus Kleinfeld, Former CEO at Alcoa and SiemensRewatch RADAR AI where...

The structured data that powers business decisions is more complex than the sequences processed by traditional AI models. Enterprise databases with their interconnected tables of customers, products, and transactions form intricate graphs that contain valuable predictive signals. But how can we effectively extract insights from these complex relationships without extensive manual feature engineering? Graph transformers are revolutionizing this space by treating databases as networks and learning directly from raw data. What if you could build models in hours instead of months while achieving better accuracy? How might this technology change the role of data scientists, allowing them to focus on business impact rather than data preparation? Could this be the missing piece that brings the AI revolution to predictive modeling? Jure Leskovec is a Professor of Computer Science at Stanford University, where he is affiliated with the Stanford AI Lab, the Machine Learning Group, and the Center for Research on Foundation Models. Previously, he served as Chief Scientist at Pinterest and held a research role at the Chan Zuckerberg Biohub. He is also a co-founder of Kumo.AI, a machine learning startup. Leskovec has contributed significantly to the development of Graph Neural Networks and co-authored PyG, a widely-used library in the field. Research from his lab has supported public health efforts during the COVID-19 pandemic and informed product development at companies including Facebook, Pinterest, Uber, YouTube, and Amazon. His work has received several recognitions, including the Microsoft Research Faculty Fellowship (2011), the Okawa Research Award (2012), the Alfred P. Sloan Fellowship (2012), the Lagrange Prize (2015), and the ICDM Research Contributions Award (2019). His research spans social networks, machine learning, data mining, and computational biomedicine, with a focus on drug discovery. He has received 12 best paper awards and five 10-year Test of Time awards at leading academic conferences. In the episode, Richie and Jure explore the need for a foundation model for enterprise data, the limitations of current AI models in predictive tasks, the potential of graph transformers for business data, and the transformative impact of relational foundation models on machine learning workflows, and much more. Links Mentioned in the Show: Jure’s PublicationsKumo AIConnect with JureCourse - Transformer Models with PyTorchRelated Episode: High Performance Generative AI Applications with Ram Sriharsha, CTO at PineconeRewatch RADAR AI  New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

Thinking about swapping your 9‑to‑5 for client work, but worried that a long German–style notice period will kill your chances?  In this live interview, seven‑year data‑freelance veteran Dimitri walks through his experience of taking his freelance career to the next level.

About the Speaker: Dimitri Visnadi is an independent data consultant with a focus on data strategy. He has been consulting companies leading the marketing data space such as Unilever, Ferrero, Heineken, and Red Bull.

He has lived and worked in 6 countries across Europe in both corporate and startup organizations. He was part of data departments at Hewlett-Packard (HP) and a Google partnered consulting firm where he was working on data products and strategy.

Having received a Masters in Business Analytics with Computer Science from University College London and a Bachelor in Business Administration from John Cabot University, Dimitri still has close ties to academia and holds a mentor position in entrepreneurship at both institutions. 🕒 TIMECODES00:00 Dimitri’s journey from corporate to freelance data specialist05:41 Job tenure trends, tech career shifts, and freelance types10:50 Freelancing challenges, success, and finding clients17:33 Freelance market trends and Dimitri’s job board23:51 Starting points, top freelance skills, and market insights32:48 Building a lifestyle business: scaling and work-life balance45:30 Data Freelancer course and marketing for freelancers48:33 Subscription services and managing client relationships56:47 Pricing models and transitioning advice1:01:02 Notice periods, networking, and risks in freelancing transition 🔗 CONNECT WITH DataTalksClub Join the community - https://datatalks.club/slack.html Subscribe to our Google calendar to have all our events in your calendar - https://calendar.google.com/calendar/... Check other upcoming events - https://lu.ma/dtc-events LinkedIn - / datatalks-club
Twitter - / datatalksclub
Website - https://datatalks.club/ 🔗 CONNECT WITH DIMITRI Linkedin - https://www.linkedin.com/in/visnadi/

In this episode, Conor and Bryce chat with Jared Hoberock about the NVIDIA Thrust Parallel Algorithms Library and more!. Link to Episode 242 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: TwitterAbout the Guest Jared Hoberock joined NVIDIA Research in October 2008. His interests include parallel programming models and physically-based rendering. Jared is the co-creator of Thrust, a high performance parallel algorithms library. While at NVIDIA, Jared has contributed to the DirectX graphics driver, Gelato, a final frame film renderer, and OptiX, a high-performance, programmable ray tracing engine. Jared received a Ph.D in computer science from the University of Illinois at Urbana-Champaign. He is a two-time recipient of the NVIDIA Graduate Research Fellowship. Show Notes Date Generated: 2025-05-21 Date Released: 2025-07-11 ThrustThrust DocsCUB LibraryCCCL LibrariesIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

In this episode, Conor and Bryce chat with Jared Hoberock about the NVIDIA Thrust Parallel Algorithms Library, specifically scan and rotate. Link to Episode 241 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: TwitterAbout the Guest Jared Hoberock joined NVIDIA Research in October 2008. His interests include parallel programming models and physically-based rendering. Jared is the co-creator of Thrust, a high performance parallel algorithms library. While at NVIDIA, Jared has contributed to the DirectX graphics driver, Gelato, a final frame film renderer, and OptiX, a high-performance, programmable ray tracing engine. Jared received a Ph.D in computer science from the University of Illinois at Urbana-Champaign. He is a two-time recipient of the NVIDIA Graduate Research Fellowship. Show Notes Date Generated: 2025-05-21 Date Released: 2025-07-04 ThrustThrust DocsNumPyRAPIDS cuDFthrust::inclusive_scanC++98 std::rotatethrust::permutation_iteratorthrust::gatherthrust::adjacent_differenceIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

In this episode, Conor and Bryce chat with Jared Hoberock about the NVIDIA Thrust Parallel Algorithms Library, Rust vs C++, Python and more. Link to Episode 240 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: TwitterAbout the Guest Jared Hoberock joined NVIDIA Research in October 2008. His interests include parallel programming models and physically-based rendering. Jared is the co-creator of Thrust, a high performance parallel algorithms library. While at NVIDIA, Jared has contributed to the DirectX graphics driver, Gelato, a final frame film renderer, and OptiX, a high-performance, programmable ray tracing engine. Jared received a Ph.D in computer science from the University of Illinois at Urbana-Champaign. He is a two-time recipient of the NVIDIA Graduate Research Fellowship. Show Notes Date Generated: 2025-05-21 Date Released: 2025-06-27 ThrustThrust Docsiota Algorithmthrust::counting_iteratorthrust::sequenceMLIRNumPyNumbaIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

In this episode, Conor and Bryce chat with Jared Hoberock about the NVIDIA Thrust Parallel Algorithms Library. Link to Episode 237 on WebsiteDiscuss this episode, leave a comment, or ask a question (on GitHub)Socials ADSP: The Podcast: TwitterConor Hoekstra: Twitter | BlueSky | MastodonBryce Adelstein Lelbach: Twitter About the Guest

Jared Hoberock joined NVIDIA Research in October 2008. His interests include parallel programming models and physically-based rendering. Jared is the co-creator of Thrust, a high performance parallel algorithms library. While at NVIDIA, Jared has contributed to the DirectX graphics driver, Gelato, a final frame film renderer, and OptiX, a high-performance, programmable ray tracing engine. Jared received a Ph.D in computer science from the University of Illinois at Urbana-Champaign. He is a two-time recipient of the NVIDIA Graduate Research Fellowship. Show Notes Date Generated: 2025-05-21 Date Released: 2025-06-06 ThrustThrust DocsC++98 std::transformthrust::reduceMPI_reduceNVIDIA MatXCuPyRAPIDS.aiThrust Summed Area Table ExampleADSP Episode 213: NumPy & Summed-Area TablesIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

In the retail industry, data science is not just about crunching numbers—it's about driving business impact through well-designed experiments. A-B testing in a physical store setting presents unique challenges that require careful planning and execution. How do you balance the need for statistical rigor with the practicalities of store operations? What role does data science play in ensuring that test results lead to actionable insights?  Philipp Paraguya is the Chapter Lead for Data Science at Aldi DX. Previously, Philipp studied applied mathematics and computer science and has worked as a BI and advanced analytics consultant in various industries and projects since graduating. Due to his background as a software developer, he has a strong connection to classic software engineering and the sensible use of data science solutions. In the episode, Adel and Philipp explore the intricacies of A-B testing in retail, the challenges of running experiments in brick-and-mortar settings, aligning stakeholders for successful experimentation, the evolving role of data scientists, the impact of genAI on data workflows, and much more. Links Mentioned in the Show: Aldi DXConnect with PhilippCourse: Customer Analytics and A/B Testing in PythonRelated Episode: Can You Use AI-Driven Pricing Ethically? with Jose Mendoza, Academic Director & Clinical Associate Professor at NYUSign up to attend RADAR: Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

In this episode, I uncover the nine biggest LIES about landing a data job. Maybe what's stopping you from pursuing a data career is just a big lie. No College Degree As A Data Analyst YT Playlist: https://www.youtube.com/playlist?list=PLo0oTKi2fPNjHi6iXT3Pu68kUmiT-xDWs Don’t Learn Python as a Data Analyst (Learn This Instead): https://www.youtube.com/watch?v=VVhURHXMSlA 💌 Join 10k+ aspiring data analysts & get my tips in your inbox weekly 👉 https://www.datacareerjumpstart.com/newsletter 🆘 Feeling stuck in your data journey? Come to my next free "How to Land Your First Data Job" training 👉 https://www.datacareerjumpstart.com/training 👩‍💻 Want to land a data job in less than 90 days? 👉 https://www.datacareerjumpstart.com/daa 👔 Ace The Interview with Confidence 👉 https://www.datacareerjumpstart.com/interviewsimulator ⌚ TIMESTAMPS 00:00 Introduction 00:05 You Need a Computer Science or Math Degree 01:20 You Have to Be Good at Math and Statistics 03:00 You Must Know Everything About Data Analytics 04:27 Certifications Matter 05:35 Skills Are Enough 07:20 AI Will Take Your Job 09:24 You'll Spend 80% of Your Time Cleaning Data 10:08 Data Titles 11:44 There Are Lots of Remote Jobs 13:17 The "Self-Taught" Data Analyst 🔗 CONNECT WITH AVERY 🎥 YouTube Channel: https://www.youtube.com/@averysmith 🤝 LinkedIn: https://www.linkedin.com/in/averyjsmith/ 📸 Instagram: https://instagram.com/datacareerjumpstart 🎵 TikTok: https://www.tiktok.com/@verydata 💻 Website: https://www.datacareerjumpstart.com/ Mentioned in this episode: Join the last cohort of 2025! The LAST cohort of The Data Analytics Accelerator for 2025 kicks off on Monday, December 8th and enrollment is officially open!

To celebrate the end of the year, we’re running a special End-of-Year Sale, where you’ll get: ✅ A discount on your enrollment 🎁 6 bonus gifts, including job listings, interview prep, AI tools + more

If your goal is to land a data job in 2026, this is your chance to get ahead of the competition and start strong.

👉 Join the December Cohort & Claim Your Bonuses: https://DataCareerJumpstart.com/daa https://www.datacareerjumpstart.com/daa

The rise of AI agents in the workplace is transforming how businesses operate, tackling repetitive tasks and freeing up human employees for more creative endeavors. But what does this mean for the future of work, and how can professionals leverage these tools effectively? As AI agents become more sophisticated, capable of reasoning and decision-making, how do you ensure they align with your business goals? What are the implications for data privacy and security, and how do you manage the transition to a more automated workforce while maintaining human oversight? Surojit Chatterjee is the founder and CEO of Ema. Previously, he guided Coinbase through a successful 2021 IPO as its Chief Product Officer and scaled Google Mobile Ads and Google Shopping into multi-billion dollar businesses as the VP and Head of Product. Surojit holds 40 US patents and has an MBA from MIT, MS in Computer Science from SUNY at Buffalo, and B. Tech from IIT Kharagpur. In the episode, Richie and Surojit explore the transformative role of AI agents in automating repetitive business tasks, enhancing creativity and innovation, improving customer support, and redefining workplace efficiency. They discuss the potential of AI employees, data privacy concerns, and the future of AI-driven business processes, and much more. Links Mentioned in the Show: EmaConnect with SurojitSkill Track: Artificial Intelligence (AI) LeadershipRelated Episode: How Generative AI is Changing Leadership with Christie Smith, Founder of the Humanity Institute and Kelly Monahan, Managing Director, Research InstituteAttend RADAR Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

In this podcast episode, we talked with Tamara Atanasoska about ​building fair AI systems.

About the Speaker:​Tamara works on ML explainability, interpretability and fairness as Open Source Software Engineer at probable. She is a maintainer of fairlearn, contributor to scikit-learn and skops. Tamara has both computer science/ software engineering and a computational linguistics(NLP) background.During the event, the guest discussed their career journey from software engineering to open-source contributions, focusing on explainability in AI through Scikit-learn and Fairlearn. They explored fairness in AI, including challenges in credit loans, hiring, and decision-making, and emphasized the importance of tools, human judgment, and collaboration. The guest also shared their involvement with PyLadies and encouraged contributions to Fairlearn. 00:00 Introduction to the event and the community 01:51 Topic introduction: Linguistic fairness and socio-technical perspectives in AI 02:37 Guest introduction: Tamara’s background and career 03:18 Tamara’s career journey: Software engineering, music tech, and computational linguistics 09:53 Tamara’s background in language and computer science 14:52 Exploring fairness in AI and its impact on society 21:20 Fairness in AI models26:21 Automating fairness analysis in models 32:32 Balancing technical and domain expertise in decision-making 37:13 The role of humans in the loop for fairness 40:02 Joining Probable and working on open-source projects 46:20 Scopes library and its integration with Hugging Face 50:48 PyLadies and community involvement 55:41 The ethos of Scikit-learn and Fairlearn

🔗 CONNECT WITH TAMARA ATANASOSKA Linkedin - https://www.linkedin.com/in/tamaraatanasoska GitHub- https://github.com/TamaraAtanasoska

🔗 CONNECT WITH DataTalksClub Join DataTalks.Club:⁠⁠https://datatalks.club/slack.html⁠⁠ Our events:⁠⁠https://datatalks.club/events.html⁠⁠ Datalike Substack -⁠⁠https://datalike.substack.com/⁠⁠ LinkedIn:⁠⁠  / datatalks-club  

AI is not just about writing code; it's about improving the entire software development process. From generating documentation to automating code reviews, AI tools are becoming indispensable. But how do you ensure the quality of AI-generated code? What strategies can you employ to maintain high standards while leveraging AI's capabilities? These are the questions developers must consider as they incorporate AI into their workflows. Eran Yahav is an associate professor at the Computer Science Department at the Technion – Israel Institute of Technology and co-founder and CTO of Tabnine (formerly Codota). Prior to that, he was a research staff member at the IBM T.J. Watson Research Center in New York (2004-2010). He received his Ph.D. from Tel Aviv University (2005) and his B.Sc. from the Technion in 1996. His research interests include program analysis, program synthesis, and program verification. Eran is a recipient of the prestigious Alon Fellowship for Outstanding Young Researchers, the Andre Deloro Career Advancement Chair in Engineering, the 2020 Robin Milner Young Researcher Award (POPL talk here), the ERC Consolidator Grant as well as multiple best paper awards at various conferences. In the episode, Richie and Eran explore AI's role in software development, the balance between AI assistance and manual coding, the impact of generative AI on code review and documentation, the evolution of developer tools, and the future of AI-driven workflows, and much more. Links Mentioned in the Show: TabnineConnect with EranCourse: Working with the OpenAI APIRelated Episode: Getting Generative AI Into Production with Lin Qiao, CEO and Co-Founder of Fireworks AIRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

Generative AI and data are more interconnected than ever. If you want quality in your AI product, you need to be connected to a database with high quality data. But with so many database options and new AI tools emerging, how do you ensure you’re making the right choices for your organization? Whether it’s enhancing customer experiences or improving operational efficiency, understanding the role of your databases in powering AI is crucial.  Andi Gutmans is the General Manager and Vice President for Databases at Google. Andi’s focus is on building, managing, and scaling the most innovative database services to deliver the industry’s leading data platform for businesses. Prior to joining Google, Andi was VP Analytics at AWS running services such as Amazon Redshift. Prior to his tenure at AWS, Andi served as CEO and co-founder of Zend Technologies, the commercial backer of open-source PHP. Andi has over 20 years of experience as an open source contributor and leader. He co-authored open source PHP. He is an emeritus member of the Apache Software Foundation and served on the Eclipse Foundation’s board of directors. He holds a bachelor’s degree in computer science from the Technion, Israel Institute of Technology. In the episode, Richie and Andi explore databases and their relationship with AI and GenAI, key features needed in databases for AI, GCP database services, AlloyDB, federated queries in Google Cloud, vector databases, graph databases, practical use cases of AI in databases and much more.  Links Mentioned in the Show: GCPConnect with AndiAlloyDB for PostgreSQLCourse: Responsible AI Data ManagementRelated Episode: The Power of Vector Databases and Semantic Search with Elan Dekel, VP of Product at PineconeSign up to RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

We talked about:

00:00 DataTalks.Club intro

08:06 Background and career journey of Katarzyna

09:06 Transition from linguistics to computational linguistics

11:38 Merging linguistics and computer science

15:25 Understanding phonetics and morpho-syntax

17:28 Exploring morpho-syntax and its relation to grammar

20:33 Connection between phonetics and speech disorders

24:41 Improvement of voice recognition systems

27:31 Overview of speech recognition technology

30:24 Challenges of ASR systems with atypical speech

30:53 Strategies for improving recognition of disordered speech

37:07 Data augmentation for training models

40:17 Transfer learning in speech recognition

42:18 Challenges of collecting data for various speech disorders

44:31 Stammering and its connection to fluency issues

45:16 Polish consonant combinations and pronunciation challenges

46:17 Use of Amazon Transcribe for generating podcast transcripts

47:28 Role of language models in speech recognition

49:19 Contextual understanding in speech recognition

51:27 How voice recognition systems analyze utterances

54:05 Personalization of ASR models for individuals

56:25 Language disorders and their impact on communication

58:00 Applications of speech recognition technology

1:00:34 Challenges of personalized and universal models

1:01:23 Voice recognition in automotive applications

1:03:27 Humorous voice recognition failures in cars

1:04:13 Closing remarks and reflections on the discussion

About the speaker:

Katarzyna is a computational linguist with over 10 years of experience in NLP and speech recognition. She has developed language models for automotive brands like Audi and Porsche and specializes in phonetics, morpho-syntax, and sentiment analysis.

Kasia also teaches at the University of Warsaw and is passionate about human-centered AI and multilingual NLP.

Join our slack: https://datatalks.club/slack.html

Brought to you by: • Paragon: ​​Build native, customer-facing SaaS integrations 7x faster. • WorkOS: For B2B leaders building enterprise SaaS — On today’s episode of The Pragmatic Engineer, I’m joined by Quinn Slack, CEO and co-founder of Sourcegraph, a leading code search and intelligence platform. Quinn holds a degree in Computer Science from Stanford and is deeply passionate about coding: to the point that he still codes every day! He also serves on the board of Hack Club, a national nonprofit dedicated to bringing coding clubs to high schools nationwide. In this insightful conversation, we discuss:             • How Sourcegraph's operations have evolved since 2021 • Why more software engineers should focus on delivering business value • Why Quinn continues to code every day, even as a CEO • Practical AI and LLM use cases and a phased approach to their adoption • The story behind Job Fairs at Sourcegraph and why it’s no longer in use • Quinn’s leadership style and his focus on customers and product excellence • The shift from location-independent pay to zone-based pay at Sourcegraph • And much more! — Where to find Quinn Slack: • X: https://x.com/sqs • LinkedIn: https://www.linkedin.com/in/quinnslack/ • Website: https://slack.org/ Where to find Gergely: • Newsletter: https://www.pragmaticengineer.com/ • YouTube: https://www.youtube.com/c/mrgergelyorosz • LinkedIn: https://www.linkedin.com/in/gergelyorosz/ • X: https://x.com/GergelyOrosz — In this episode, we cover: (01:35) How Sourcegraph started and how it has evolved over the past 11 years (04:14) How scale-ups have changed  (08:27) Learnings from 2021 and how Sourcegraph’s operations have streamlined (15:22) Why Quinn is for gradual increases in automation and other thoughts on AI (18:10) The importance of changelogs (19:14) Keeping AI accountable and possible future use cases  (22:29) Current limitations of AI (25:08) Why early adopters of AI coding tools have an advantage  (27:38) Why AI is not yet capable of understanding existing codebases  (31:53) Changes at Sourcegraph since the deep dive on The Pragmatic Engineer blog (40:14) The importance of transparency and understanding the different forms of compensation (40:22) Why Sourcegraph shifted to zone-based pay (47:15) The journey from engineer to CEO (53:28) A comparison of a typical week 11 years ago vs. now (59:20) Rapid fire round The Pragmatic Engineer deepdives relevant for this episode: • Inside Sourcegraph’s engineering culture: Part 1 https://newsletter.pragmaticengineer.com/p/inside-sourcegraphs-engineering-culture• Inside Sourcegraph’s engineering culture: Part 2 https://newsletter.pragmaticengineer.com/p/inside-sourcegraphs-engineering-culture-part-2 — References and Transcript: See the transcript and other references from the episode at https://newsletter.pragmaticengineer.com/podcast — Production and marketing by https://penname.co/. For inquiries about sponsoring the podcast, email [email protected].

Get full access to The Pragmatic Engineer at newsletter.pragmaticengineer.com/subscribe