talk-data.com talk-data.com

Topic

React

javascript_library front_end web_development

17

tagged

Activity Trend

9 peak/qtr
2020-Q1 2026-Q1

Activities

17 activities · Newest first

Send us a text

Welcome to the cozy corner of the tech world where ones and zeros mingle with casual chit-chat. Datatopics Unplugged is your go-to spot for relaxed discussions around tech, news, data, and society. Dive into conversations that should flow as smoothly as your morning coffee (but don’t), where industry insights meet laid-back banter. Whether you’re a data aficionado or just someone curious about the digital age, pull up a chair, relax, and let’s get into the heart of data, unplugged style! In this episode, we are joined by special guest Nico for a lively and wide-ranging tech chat. Grab your headphones and prepare for: Strava’s ‘Athlete Intelligence’ feature: A humorous dive into how workout apps are getting smarter—and a little sassier.Frontend frameworks: HTMX is a tough choice: A candid discussion on using React versus emerging alternatives like HTMX and when to keep things lightweight.Octoverse 2024 trends and language wars: Python takes the lead over JavaScript as the top GitHub language, and we dissect why Go, TypeScript, and Rust are getting love too.GenAI meets Minecraft: Imagine procedurally generated worlds and dreamlike coherence breaks—Minecraft-style. How GenAI could redefine gameplay narratives and NPC behavior.OpenAI’s O1 model leak: Insights on the recent leak, what’s new, and its implications for the future of AI.Tiger Beetle’s transactional databases and testing tales: Nico walks us through Tiger Style, deterministic simulation testing, and why it’s a game changer for distributed databases.Automated testing for LLMOps: A quick overview of automated testing for large language models and its role in modern AI workflows.DeepLearning.ai’s short courses: Quick, impactful learning to level up your AI skills.

We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. Staying ahead means knowing what’s happening right now—not minutes or hours later. Real-time analytics promises to help teams react faster, make informed choices, and even predict issues before they arise. But implementing these systems is no small feat, and it requires careful alignment between technical capabilities and business needs. How do you ensure that real-time data actually drives impact? And what should organizations consider to make sure their real-time analytics investments lead to tangible benefits? Zuzanna Stamirowska is the CEO of Pathway.com - the fastest data processing engine on the market which makes real-time intelligence possible. Zuzanna is also the author of the state-of-the-art forecasting model for maritime trade published by the National Academy of Sciences of the USA. While working on this project she saw that the digitization of traditional industries was slowed down by the lack of a software infrastructure capable of doing automated reasoning on top of data streams, in real time. This was the spark to launch Pathway. She holds a Master’s degree in Economics and Public Policy from Sciences Po, Ecole Polytechnique, and ENSAE, as well as a PhD in Complexity Science.. Hélène Stanway is Independent Advisor & Consultant at HMLS Consulting Ltd. Hélène is an award-winning and highly effective insurance leader with a proven track record in emerging technologies, innovation, operations, data, change, and digital transformation. Her passion for actively combining the human element, design, and innovation alongside technology has enabled companies in the global insurance market to embrace change by achieving their desired strategic goals, improving processes, increasing efficiency, and deploying relevant tools. With a special passion for IoT and Sensor Technology, Hélène is a perpetual learner, driven to help delegates succeed.  In the episode, Richie, Zuzanna and Hélène explore real-time analytics, their operational impact, use-cases of real-time analytics across industries, the benefits of adopting real-time analytics, the key roles and stakeholders you need to make that happen, operational challenges, strategies for effective adoption, the real-time of the future, common pitfalls, and much more.  Links Mentioned in the Show:

Pathway

Connect with Zuzanna and HélèneLiArticle: What are digital twins and why do we need them?Course: Time Series Analysis in Power BIRelated Episode: How Real Time Data Accelerates Business Outcomes with George TrujilloSign up to RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data

Welcome to another curated, Promoted Episode of Experiencing Data! 

In episode 144, Shashank Garg, Co-Founder and CEO of Infocepts, joins me to explore whether all this discussion of data products out on the web actually has substance and is worth the perceived extra effort. Do we always need to take a product approach for ML and analytics initiatives? Shashank dives into how Infocepts approaches the creation of data solutions that are designed to be actionable within specific business workflows—and as I often do, I started out by asking Shashank how he and Infocepts define the term “data product.” We discuss a few real-world applications Infocepts has built, and the measurable impact of these data products—as well as some of the challenges they’ve faced that your team might as well. Skill sets also came up; who does design? Who takes ownership of the product/value side? And of course, we touch a bit on GenAI.

Highlights/ Skip to

Shashank gives his definition of data products  (01:24) We tackle the challenges of user adoption in data products (04:29) We discuss the crucial role of integrating actionable insights into data products for enhanced decision-making (05:47) Shashank shares insights on the evolution of data products from concept to practical integration (10:35) We explore the challenges and strategies in designing user-centric data products (12:30) I ask Shashank about typical environments and challenges when starting new data product consultations (15:57) Shashank explains how Infocepts incorporates AI into their data solutions (18:55) We discuss the importance of understanding user personas and engaging with actual users (25:06) Shashank describes the roles involved in data product development’s ideation and brainstorming stages (32:20) The issue of proxy users not truly representing end-users in data product design is examined (35:47) We consider how organizations are adopting a product-oriented approach to their data strategies (39:48) Shashank and I delve into the implications of GenAI and other AI technologies on product orientation and user adoption (43:47) Closing thoughts (51:00)

Quotes from Today’s Episode

“Data products, at least to us at Infocepts, refers to a way of thinking about and organizing your data in a way so that it drives consumption, and most importantly, actions.” - Shashank Garg (1:44) “The way I see it is [that] the role of a DPM (data product manager)—whether they have the title or not—is benefits creation. You need to be responsible for benefits, not for outputs. The outputs have to create benefits or it doesn’t count. Game over” - Brian O’Neill (10:07) We talk about bridging the gap between the worlds of business and analytics... There's a huge gap between the perception of users and the tech leaders who are producing it." - Shashank Garg (17:37) “IT leaders often limit their roles to provisioning their secure data, and then they rely on businesses to be able to generate insights and take actions. Sometimes this handoff works, and sometimes it doesn’t because of quality governance.” - Shashank Garg  (23:02) “Data is the kind of field where people can react very, very quickly to what’s wrong.”  - Shashank Garg (29:44) “It’s much easier to get to a good prototype if we know what the inputs to a prototype are, which include data about the people who are going to use the solution, their usage scenarios, use cases, attitudes, beliefs…all these kinds of things.” - Brian O’Neill (31:49) “For data, you need a separate person, and then for designing, you need a separate person, and for analysis, you need a separate person—the more you can combine, I don’t think you can create super-humans who can do all three, four disciplines, but at least two disciplines and can appreciate the third one that makes it easier.” - Shashank Garg (39:20) “When we think of AI, we’re all talking about multiple different delivery methods here. I think AI is starting to become GenAI to a lot of non-data people. It’s like their—everything is GenAI.” -  Brian O'Neill (43:48)

Links

Infocepts website: https://www.infocepts.ai/ Shashank Garg on LinkedIn: https://www.linkedin.com/in/shashankgarg/  Top 5 Data & AI initiatives for business success: https://www.infocepts.ai/downloads/top-5-data-and-ai-initiatives-to-drive-business-growth-in-2024-beyond/

We talked about:

Reem’s background Context-aware sensing and transfer learning Shifting focus from PhD to industry Reem’s experience with startups and dealing with prejudices towards PhDs AI interviewing solution How candidates react to getting interviewed by an AI avatar End-to-end overview of a machine learning project The pitfalls of using LLMs in your process Mitigating biases Addressing specific requirements for specific roles Reem’s resource recommendations

Links:

LinkedIn: https://www.linkedin.com/in/reemmahmoud/recent-activity/all/ Website: https://topmate.io/reem_mahmoud

Free Data Engineering course: https://github.com/DataTalksClub/data-engineering-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html

This week I’m covering Part 1 of the 15 Ways to Increase User Adoption of Data Products, which is based on an article I wrote for subscribers of my mailing list. Throughout this episode, I describe why focusing on empathy, outcomes, and user experience leads to not only better data products, but also better business outcomes. The focus of this episode is to show you that it’s completely possible to take a human-centered approach to data product development without mandating behavioral changes, and to show how this approach benefits not just end users, but also the businesses and employees creating these data products. 

Highlights/ Skip to:

Design behavior change into the data product. (05:34) Establish a weekly habit of exposing technical and non-technical members of the data team directly to end users of solutions - no gatekeepers allowed. (08:12) Change funding models to fund problems, not specific solutions, so that your data product teams are invested in solving real problems. (13:30) Hold teams accountable for writing down and agreeing to the intended benefits and outcomes for both users and business stakeholders. Reject projects that have vague outcomes defined. (16:49) Approach the creation of data products as “user experiences” instead of a “thing” that is being built that has different quality attributes. (20:16) If the team is tasked with being “innovative,” leaders need to understand the innoficiency problem, shortened iterations, and the importance of generating a volume of ideas (bad and good) before committing to a final direction. (23:08) Co-design solutions with [not for!] end users in low, throw-away fidelity, refining success criteria for usability and utility as the solution evolves. Embrace the idea that research/design/build/test is not a linear process. (28:13) Test (validate) solutions with users early, before committing to releasing them, but with a pre-commitment to react to the insights you get back from the test. (31:50)

Links:

15 Ways to Increase Adoption of Data Products: https://designingforanalytics.com/resources/15-ways-to-increase-adoption-of-data-products-using-techniques-from-ux-design-product-management-and-beyond/ Company website: https://designingforanalytics.com Episode 54: https://designingforanalytics.com/resources/episodes/054-jared-spool-on-designing-innovative-ml-ai-and-analytics-user-experiences/ Episode 106: https://designingforanalytics.com/resources/episodes/106-ideaflow-applying-the-practice-of-design-and-innovation-to-internal-data-products-w-jeremy-utley/ Ideaflow: https://www.amazon.com/Ideaflow-Only-Business-Metric-Matters/dp/0593420586/ Podcast website: https://designingforanalytics.com/podcast

Send us a text Microsoft announces Python for ExcelAnnouncing Python in Excel: Combining the power of Python and the flexibility of Excel.https://techcommunity.microsoft.com/t5/excel-blog/announcing-python-in-excel-combining-the-power-of-python-and-the/ba-p/3893439AI-powered Coca ColaCoca‑Cola® Creations Imagines Year 3000 With New Futuristic Flavor and AI-Powered Experiencehttps://www.coca-colacompany.com/media-center/coca-cola-creations-imagines-year-3000-futuristic-flavor-ai-powered-experience40% productivity boost from AI, according to HarvardEnterprise workers gain 40 percent performance boost from GPT-4, Harvard study findshttps://venturebeat.com/ai/enterprise-workers-gain-40-percent-performance-boost-from[…]ewsletter&utm_campaign=ibm-pledges-to-train-two-million-in-aiMicrosoft’s Copilot announcementAnnouncing Microsoft Copilot, your everyday AI companionhttps://blogs.microsoft.com/blog/2023/09/21/announcing-microsoft-copilot-your-everyday-ai-companion/v0 - AI-powered react componentsWhat is v0?https://v0.dev/faq#what-is-v0Microsoft looking for a nuclear energy expertMicrosoft is hiring a nuclear energy expert to help power its AI and cloud data centershttps://www.cnbc.com/2023/09/25/microsoft-is-hiring-a-nuclear-energy-expert-to-help-power-data-centers.htmlIntro music courtesy of fesliyanstudios.com

Summary

The promise of streaming data is that it allows you to react to new information as it happens, rather than introducing latency by batching records together. The peril is that building a robust and scalable streaming architecture is always more complicated and error-prone than you think it's going to be. After experiencing this unfortunate reality for themselves, Abhishek Chauhan and Ashish Kumar founded Grainite so that you don't have to suffer the same pain. In this episode they explain why streaming architectures are so challenging, how they have designed Grainite to be robust and scalable, and how you can start using it today to build your streaming data applications without all of the operational headache.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Businesses that adapt well to change grow 3 times faster than the industry average. As your business adapts, so should your data. RudderStack Transformations lets you customize your event data in real-time with your own JavaScript or Python code. Join The RudderStack Transformation Challenge today for a chance to win a $1,000 cash prize just by submitting a Transformation to the open-source RudderStack Transformation library. Visit dataengineeringpodcast.com/rudderstack today to learn more Hey there podcast listener, are you tired of dealing with the headache that is the 'Modern Data Stack'? We feel your pain. It's supposed to make building smarter, faster, and more flexible data infrastructures a breeze. It ends up being anything but that. Setting it up, integrating it, maintaining it—it’s all kind of a nightmare. And let's not even get started on all the extra tools you have to buy to get it to do its thing. But don't worry, there is a better way. TimeXtender takes a holistic approach to data integration that focuses on agility rather than fragmentation. By bringing all the layers of the data stack together, TimeXtender helps you build data solutions up to 10 times faster and saves you 70-80% on costs. If you're fed up with the 'Modern Data Stack', give TimeXtender a try. Head over to dataengineeringpodcast.com/timextender where you can do two things: watch us build a data estate in 15 minutes and start for free today. Join in with the event for the global data community, Data Council Austin. From March 28-30th 2023, they'll play host to hundreds of attendees, 100 top speakers, and dozens of startups that are advancing data science, engineering and AI. Data Council attendees are amazing founders, data scientists, lead engineers, CTOs, heads of data, investors and community organizers who are all working together to build the future of data. As a listener to the Data Engineering Podcast you can get a special discount of 20% off your ticket by using the promo code dataengpod20. Don't miss out on their only event this year! Visit: dataengineeringpodcast.com/data-council today Your host is Tobias Macey and today I'm interviewing Ashish Kumar and Abhishek Chauhan about Grainite, a platform designed to give you a single place to build streaming data applications

Interview

Introduction How did you get involved in the area of data management? Can you describe what Grainite is and the story behind it? What are the personas that you are focused on addressing with Grainite? What are some of the most complex aspects of building streaming data applications in the absence of something like Grainite?

How does Grainite work to reduce that complexity?

What are some of the commonalities that you see in the teams/organizations that find their way to Grainite?

What are some of the higher-order projects that teams are able to build when they are using Grainite as a starting point vs. where they would be spending effort on a fully managed streaming architecture?

Can you describe how Grainite is architected?

How have the design and goals of the platform changed/evolved since you first started working on it?

Wh

Today I’m chatting with Iván Herrero Bartolomé, Chief Data Officer at Grupo Intercorp. Iván describes how he was prompted to write his new article in CDO Magazine, “CDOs, Let’s Get Out of Our Comfort Zone” as he recognized the importance of driving cultural change within organizations in order to optimize the use of data. Listen in to find out how Iván is leveraging the role of the analytics translator to drive this cultural shift, as well as the challenges and benefits he sees data leaders encounter as they move from tactical to strategic objectives. Iván also reveals the number one piece of advice he’d give CDOs who are struggling with adoption. 

Highlights / Skip to:

Iván explains what prompted him to write his new article, “CDOs, Let’s Get Out of Our Comfort Zone” (01:08) What Iván feels is necessary for data leaders to close the gap between data and the rest of the business and why (03:44) Iván dives into who he feels really owns delivery of value when taking on new data science and analytics projects (09:50) How Iván’s team went from managing technical projects that often didn’t make it to production to working on strategic projects that almost always make it to production (13:06) The framework Iván has developed to upskill technical and business roles to be effective data / analytics translators (16:32) The challenge Iván sees data leaders face as they move from setting and measuring tactical goals to moving towards strategic goals and initiatives (24:12) Iván explains how the C-Suite’s attitude impacts the cross-functional role of data & analytics leadership (28:55) The number one piece of advice Iván would give new CDO’s struggling with low adoption of their data products and solutions (31:45)

Quotes from Today’s Episode “We’re going to do all our best to ensure that [...] everything that is expected from us is done in the best possible way. But that’s not going to be enough. We need a sponsorship and we need someone accountable for the project and someone who will be pushing and enabling the use of the solution once we are gone. Because we cannot stay forever in every company.” – Iván Herrero Bartolomé (10:52)

“We are trying to upskill people from the business to become data translators, but that’s going to take time. Especially what we try to do is to take product owners and give them a high-level immersion on the state-of-the-art and the possibilities that data analytics bring to the table. But as we can’t rely on our companies having this kind of talent and these data translators, they are one of the profiles that we bring in for every project that we work on.” – Iván Herrero Bartolomé (13:51)

“There’s a lot to do, not just between data and analytics and the other areas of the company, but aligning the incentives of all the organization towards the same goals in a way that there’s no friction between the goals of the different areas, the people, [...]  and the final goals of the organization. – Iván Herrero Bartolomé (23:13) “Deciding which goals are you going to be co-responsible for, I think that is a sophisticated process that it’s not mastered by many companies nowadays. That probably is one of the main blockers keeping data analytics areas working far from their business counterparts” – Iván Herrero Bartolomé (26:05)

“When the C-suite looks at data and analytics, if they think these are just technical skills, then the data analytics team are just going to behave as technical people. And many, many data analytics teams are set up as part of the IT organization. So, I think it all begins somehow with how the C-suite of our companies look at us.” – Iván Herrero Bartolomé (28:55) “For me, [digital] means much more than the technical development of solutions; it should also be part of the transformation of the company, both in how companies develop relationships with their customers, but also inside how every process in the companies becomes more nimble and can react faster to the changes in the market.” – Iván Herrero Bartolomé (30:49) “When you feel that everyone else not doing what you think they should be doing, think twice about whether it is they who are not doing what they should be doing or if it’s something that you are not doing properly.” – Iván Herrero Bartolomé (31:45)

Links “CDOs, Let’s Get Out of Our Comfort Zone”: https://www.cdomagazine.tech/cdo_magazine/topics/opinion/cdos-lets-get-out-of-our-comfort-zone/article_dce87fce-2479-11ed-a0f4-03b95765b4dc.html LinkedIn: https://www.linkedin.com/in/ivan-herrero-bartolome/

Summary Logistics and supply chains are under increased stress and scrutiny in recent years. In order to stay ahead of customer demands, businesses need to be able to react quickly and intelligently to changes, which requires fast and accurate insights into their operations. Pathway is a streaming database engine that embeds artificial intelligence into the storage, with functionality designed to support the spatiotemporal data that is crucial for shipping and logistics. In this episode Adrian Kosowski explains how the Pathway product got started, how its design simplifies the creation of data products that support supply chain operations, and how developers can help to build an ecosystem of applications that allow businesses to accelerate their time to insight.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. Push information about data freshness and quality to your business intelligence, automatically scale up and down your warehouse based on usage patterns, and let the bots answer those questions in Slack so that the humans can focus on delivering real value. Go to dataengineeringpodcast.com/atlan today to learn more about how Atlan’s active metadata platform is helping pioneering data teams like Postman, Plaid, WeWork & Unilever achieve extraordinary things with metadata and escape the chaos. Prefect is the modern Dataflow Automation platform for the modern data stack, empowering data practitioners to build, run and monitor robust pipelines at scale. Guided by the principle that the orchestrator shouldn’t get in your way, Prefect is the only tool of its kind to offer the flexibility to write code as workflows. Prefect specializes in glueing together the disparate pieces of a pipeline, and integrating with modern distributed compute libraries to bring power where you need it, when you need it. Trusted by thousands of organizations and supported by over 20,000 community members, Prefect powers over 100MM business critical tasks a month. For more information on Prefect, visit dataengineeringpodcast.com/prefect. Data engineers don’t enjoy writing, maintaining, and modifying ETL pipelines all day, every day. Especially once they realize 90% of all major data sources like Google Analytics, Salesforce, Adwords, Facebook, Spreadsheets, etc., are already available as plug-and-play connectors with reliable, intuitive SaaS solutions. Hevo Data is a highly reliable and intuitive data pipeline platform used by data engineers from 40+ countries to set up and run low-latency ELT pipelines with zero maintenance. Boasting more than 150 out-of-the-box connectors that can be set up in minutes, Hevo also allows you to monitor and control your pipelines. You get: real-time data flow visibility, fail-safe mechanisms, and alerts if anything breaks; preload transformations and auto-schema mapping precisely control how data lands in your destination; models and workflows to transform data for analytics; and reverse-ETL capability to move the transformed data back to your business software to inspire timely action. All of this, plus its transparent pricing and 24*7 live s

Today I’m chatting with Emilie Shario, a Data Strategist in Residence at Amplify Partners. Emilie thinks data teams should operate like product teams. But what led her to that conclusion, and how has she put the idea into practice? Emilie answers those questions and more, delving into what kind of pushback and hiccups someone can expect when switching from being data-driven to product-driven and sharing advice for data scientists and analytics leaders.

Highlights / Skip to:

Answering the question “whose job is it” (5:18) Understanding and solving problems instead of just building features people ask for (9:05) Emilie explains what Amplify Partners is and talks about her work experience and how it fuels her perspectives on data teams (11:04) Emilie and I talk about the definition of data product (13:00) Emilie talks about her approach to building and training a data team (14:40) We talk about UX designers and how they fit into Emilie’s data teams (18:40) Emilie talks about the book and blog “Storytelling with Data” (21:00) We discuss the push back you can expect when trying to switch a team from being data driven to being product driven (23:18) What hiccups can people expect when switching to a product driven model (30:36) Emilie’s advice for data scientists and and analyst leaders (35:50) Emilie explains what Locally Optimistic is (37:34)

Quotes from Today’s Episode “Our thesis is…we need to understand the problems we’re solving before we start building solutions, instead of just building the things people are asking for.” — Emilie (2:23)

“I’ve seen this approach of flipping the ask on its head—understanding the problem you’re trying to solve—work and be more successful at helping drive impact instead of just letting your data team fall into this widget builder service trap.” — Emilie (4:43)

“If your answer to any problem to me is, ‘That’s not my job,’ then I don’t want you working for me because that’s not what we’re here for. Your job is whatever the problem in front of you that needs to be solved.” — Emilie (7:14)

“I don’t care if you have all of the data in the world and the most talented machine learning engineers and you’ve got the ability to do the coolest new algorithm fancy thing. If it doesn’t drive business impact, it doesn’t matter.” — Emilie (7:52)

“Data is not just a thing that anyone can do. It’s not just about throwing numbers in a spreadsheet anymore. It’s about driving business impact. But part of how we drive business impact with data is making it accessible. And accessible isn’t just giving people the numbers, it’s also communicating with it effectively, and UX is a huge piece of how we do that.” — Emilie (19:57)

“There are no null choices in design. Someone is deciding what some other human—a customer, a client, an internal stakeholder—is going to use, whether it’s a React app, or a Power BI dashboard, or a spreadsheet dump, or whatever it is, right? There will be an experience that is created, whether it is intentionally created or not.” — Brian (20:28)

“People will think design is just putting in colors that match together, like, or spinning the color wheel and seeing what lands. You know, there’s so much more to it. And it is an expertise; it is a domain that you have to develop.” — Emilie (34:58)

Links Referenced: Blog post by Rifat Majumder storytellingwithdata.com Experiencing Data Episode 28 with Cole Nussbaumer Knaflic locallyoptimistic.com Twitter: @emilieschario

Send us a text Hosted by Al Martin, VP, Data and AI Expert Services and Learning at IBM, Making Data Simple provides the latest thinking on big data, A.I., and the implications for the enterprise from a range of experts.   Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next. 

Abstract   This week on Making Data Simple, we have a returning guest Dr. Kyu Rhee VP & Chief Health Officer IBM and IBM Watson Health, discussing the Covid-19 pandemic and how we prepare and react individually and as a country. What can we do for ourselves and how this pandemic affects the economy. And when do we see a light at the end of the tunnel.

Show Notes

  1. https://www.ibm.com/blogs/watson-health/author/kyurhee/
  2. https://www.ibm.com/impact/covid-19/

Connect with the Team

Producer Kate Brown - LinkedIn.

Producer Michael Sestak - LinkedIn. Producer Meighann Helene - LinkedIn.

Host Al Martin - LinkedIn and Twitter.

Additional resources:   IBM Watson Health COVID-19 Resources: https://www.ibm.com/watson-health/covid-19

IBM Watson Health: Micromedex with Watson: https://www.ibm.com/products/dynamed-and-micromedex-with-watson

How governments are rising to the challenge of COVID-19: https://www.ibm.com/blogs/watson-health/governments-agencies-rising-challenge-of-covid-19/

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Send us a text Hosted by Al Martin, VP, Data and AI Expert Services and Learning at IBM, Making Data Simple provides the latest thinking on big data, A.I., and the implications for the enterprise from a range of experts.   Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.  Abstract   This week on Making Data Simple, we have a returning guest Dr. Kyu Rhee VP & Chief Health Officer IBM and IBM Watson Health, discussing the Covid-19 pandemic and how we prepare and react individually and as a country. What can we do for ourselves and how this pandemic affects the economy. And when do we see a light at the end of the tunnel. Show Notes 1. https://www.ibm.com/blogs/watson-health/author/kyurhee/ 2. https://www.ibm.com/impact/covid-19/ Connect with the Team Producer Kate Brown - LinkedIn. Producer Michael Sestak - LinkedIn. Producer Meighann Helene - LinkedIn.

Host Al Martin - LinkedIn and Twitter. Additional resources:   IBM Watson Health COVID-19 Resources: https://www.ibm.com/watson-health/covid-19 IBM Watson Health: Micromedex with Watson: https://www.ibm.com/products/dynamed-and-micromedex-with-watson How governments are rising to the challenge of COVID-19: https://www.ibm.com/blogs/watson-health/governments-agencies-rising-challenge-of-covid-19/ Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Send us a text Hosted by Al Martin, VP, Data and AI Expert Services and Learning at IBM, Making Data Simple provides the latest thinking on big data, A.I., and the implications for the enterprise from a range of experts.

Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.  Abstract

This week on Making Data Simple, we have a returning guest Dr. Kyu Rhee VP & Chief Health Officer IBM and IBM Watson Health, discussing the Covid-19 pandemic and how we prepare and react individually and as a country. What can we do for ourselves and how this pandemic affects the economy. And when do we see a light at the end of the tunnel. Show Notes 1. https://www.ibm.com/blogs/watson-health/author/kyurhee/ 2. https://www.ibm.com/impact/covid-19/ Connect with the Team Producer Kate Brown - LinkedIn. Producer Michael Sestak - LinkedIn. Producer Meighann Helene - LinkedIn.

Host Al Martin - LinkedIn and Twitter. Additional resources:

IBM Watson Health COVID-19 Resources: https://www.ibm.com/watson-health/covid-19 IBM Watson Health: Micromedex with Watson: https://www.ibm.com/products/dynamed-and-micromedex-with-watson How governments are rising to the challenge of COVID-19: https://www.ibm.com/blogs/watson-health/governments-agencies-rising-challenge-of-covid-19/ (edited) 

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Send us a text This week on Making Data Simple, Dinesh Nirmal comes on the show to discuss current industry trends. Host Al Martin poses questions that are both technical and leadership oriented. Together, they discuss the new, emerging technologies that drives them while providing their own definitions of team building and success. Listen, engage, react. Give us your feedback and get in on the conversation.

Show Notes Check us out on: - YouTube - Apple Podcasts - Google Play Music - Spotify - TuneIn - Stitcher 00:10 - Connect with Producer Steve Moore on LinkedIn and Twitter. 00:15 - Connect with Producer Liam Seston on LinkedIn and Twitter.  00:20 - Connect with Producer Rachit Sharma on LinkedIn.  00:25 - Connect with Host Al Martin on LinkedIn and Twitter.  01:37 - Connect with Dinesh Nirmal on LinkedIn and Twitter. 06:06 - An interesting read on the state of illegal dumping in rural California 11:14 - Some examples of successful AI uses cases. 14:31 - Learn about blockchain here. 29:06 - Find out how open source is helping remove data silos in the enterprise. 32:40 - Check out IBM's content on big data analytics. Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Summary Controlling access to a database is a solved problem… right? It can be straightforward for small teams and a small number of storage engines, but once either or both of those start to scale then things quickly become complex and difficult to manage. After years of running across the same issues in numerous companies and even more projects Justin McCarthy built strongDM to solve database access management for everyone. In this episode he explains how the strongDM proxy works to grant and audit access to storage systems and the benefits that it provides to engineers and team leads.

Introduction

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Justin McCarthy about StrongDM, a hosted service that simplifies access controls for your data

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining the problem that StrongDM is solving and how the company got started?

What are some of the most common challenges around managing access and authentication for data storage systems? What are some of the most interesting workarounds that you have seen? Which areas of authentication, authorization, and auditing are most commonly overlooked or misunderstood?

Can you describe the architecture of your system?

What strategies have you used to enable interfacing with such a wide variety of storage systems?

What additional capabilities do you provide beyond what is natively available in the underlying systems? What are some of the most difficult aspects of managing varying levels of permission for different roles across the diversity of platforms that you support, given that they each have different capabilities natively? For a customer who is onboarding, what is involved in setting up your platform to integrate with their systems? What are some of the assumptions that you made about your problem domain and market when you first started which have been disproven? How do organizations in different industries react to your product and how do their policies around granting access to data differ? What are some of the most interesting/unexpected/challenging lessons that you have learned in the process of building and growing StrongDM?

Contact Info

LinkedIn @justinm on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

StrongDM Authentication Vs. Authorization Hashicorp Vault Configuration Management Chef Puppet SaltStack Ansible Okta SSO (Single Sign On SOC 2 Two Factor Authentication SSH (Secure SHell) RDP

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary

Business Intelligence software is often cumbersome and requires specialized knowledge of the tools and data to be able to ask and answer questions about the state of the organization. Metabase is a tool built with the goal of making the act of discovering information and asking questions of an organizations data easy and self-service for non-technical users. In this episode the CEO of Metabase, Sameer Al-Sakran, discusses how and why the project got started, the ways that it can be used to build and share useful reports, some of the useful features planned for future releases, and how to get it set up to start using it in your environment.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Sameer Al-Sakran about Metabase, a free and open source tool for self service business intelligence

Interview

Introduction How did you get involved in the area of data management? The current goal for most companies is to be “data driven”. How would you define that concept?

How does Metabase assist in that endeavor?

What is the ratio of users that take advantage of the GUI query builder as opposed to writing raw SQL?

What level of complexity is possible with the query builder?

What have you found to be the typical use cases for Metabase in the context of an organization? How do you manage scaling for large or complex queries? What was the motivation for using Clojure as the language for implementing Metabase? What is involved in adding support for a new data source? What are the differentiating features of Metabase that would lead someone to choose it for their organization? What have been the most challenging aspects of building and growing Metabase, both from a technical and business perspective? What do you have planned for the future of Metabase?

Contact Info

Sameer

salsakran on GitHub @sameer_alsakran on Twitter LinkedIn

Metabase

Website @metabase on Twitter metabase on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Expa Metabase Blackjet Hadoop Imeem Maslow’s Hierarchy of Data Needs 2 Sided Marketplace Honeycomb Interview Excel Tableau Go-JEK Clojure React Python Scala JVM Redash How To Lie With Data Stripe Braintree Payments

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

Building a data pipeline that is reliable and flexible is a difficult task, especially when you have a small team. Astronomer is a platform that lets you skip straight to processing your valuable business data. Ry Walker, the CEO of Astronomer, explains how the company got started, how the platform works, and their commitment to open source.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at www.dataengineeringpodcast.com/linode?utm_source=rss&utm_medium=rss and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers This is your host Tobias Macey and today I’m interviewing Ry Walker, CEO of Astronomer, the platform for data engineering.

Interview

Introduction How did you first get involved in the area of data management? What is Astronomer and how did it get started? Regulatory challenges of processing other people’s data What does your data pipelining architecture look like? What are the most challenging aspects of building a general purpose data management environment? What are some of the most significant sources of technical debt in your platform? Can you share some of the failures that you have encountered while architecting or building your platform and company and how you overcame them? There are certain areas of the overall data engineering workflow that are well defined and have numerous tools to choose from. What are some of the unsolved problems in data management? What are some of the most interesting or unexpected uses of your platform that you are aware of?

Contact Information

Email @rywalker on Twitter

Links

Astronomer Kiss Metrics Segment Marketing tools chart Clickstream HIPAA FERPA PCI Mesos Mesos DC/OS Airflow SSIS Marathon Prometheus Grafana Terraform Kafka Spark ELK Stack React GraphQL PostGreSQL MongoDB Ceph Druid Aries Vault Adapter Pattern Docker Kinesis API Gateway Kong AWS Lambda Flink Redshift NOAA Informatica SnapLogic Meteor

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast