talk-data.com talk-data.com

Topic

Cyber Security

cybersecurity information_security data_security privacy

2078

tagged

Activity Trend

297 peak/qtr
2020-Q1 2026-Q1

Activities

2078 activities · Newest first

As organisations scale their data ecosystems, ensuring consistency, compliance, and usability across multiple data products becomes a critical challenge. This session explores a practical approach to implementing a Data Governance framework that balances control with agility.

Key takeaways:

- We will discuss key principles, common pitfalls, and best practices for aligning governance with business objectives while fostering innovation.

- Attendees will gain insights into designing governance policies, automating compliance, and driving adoption across decentralised data teams.

- Real-world examples will illustrate how to create a scalable, federated model that enhances data quality, security, and interoperability across diverse data products.

It sounds simple: “Hey AI, refresh my Salesforce data.” But what really happens when that request travels through your stack?

Using Airbyte’s architecture as a model, this talk explores the complexity behind natural language data triggers - from spinning up connectors and handling credentials, to enforcing access controls and orchestrating safe, purpose-driven movement. We’ll introduce a unified framework for thinking about all types of data movement, from bulk ingestion to fine-grained activation - a model we’ve developed to bring clarity to a space crowded with overlapping terms and toolchains.

We’ll also explore how this foundation—and any modern data movement platform—must evolve for an AI-native world, where speed, locality, and security are non-negotiable. That includes new risks: leaking credentials into LLMs, or triggering unintended downstream effects from a single prompt.

We’ll close with a live demo: spinning up a local data plane and moving data via Airbyte—simply by chatting with a bot.

In this session, we’ll take a closer look at the security risks that come with integrating LLMs into applications. LLMs can be powerful allies in cybersecurity — helping with detection, testing, and protection — but they can just as easily be exploited for attacks. We’ll explore key threats such as prompt injection, jailbreaking, and agent-specific vulnerabilities, and discuss why they are currently seen as the most pressing risks. Finally, we’ll look at defense strategies, from prompt-level safeguards to system-wide controls, and show how best practices can make a real difference in securing AI systems.

The rapid evolution of AI, fueled by powerful Large Language Models (LLMs) and autonomous agents, is reshaping how we build, deploy, and manage AI systems. This presentation explores the critical intersection of MLOps and AI architecture, highlighting the paradigm shifts required to integrate LLMs and agents into production. We will address key architectural challenges, including scalability, observability, and security, while examining emerging MLOps practices such as robust data pipelines, model monitoring, and continuous optimization. Attendees will gain practical insights and actionable strategies to navigate the complexities of modern AI deployments, unlocking the full potential of LLMs and agents while ensuring operational excellence.

As AI evolves with powerful Large Language Models (LLMs) and autonomous agents, deploying and managing these systems requires new approaches. This presentation explores the crucial intersection of MLOps and AI architecture, highlighting the shift toward scalable, observable, and secure AI deployments. We’ll examine key architectural considerations for integrating LLMs and agents into production, alongside evolving MLOps practices such as robust data pipelines, model monitoring, and continuous optimization.

Advances in Artificial Intelligence Applications in Industrial and Systems Engineering

Comprehensive guide offering actionable strategies for enhancing human-centered AI, efficiency, and productivity in industrial and systems engineering through the power of AI. Advances in Artificial Intelligence Applications in Industrial and Systems Engineering is the first book in the Advances in Industrial and Systems Engineering series, offering insights into AI techniques, challenges, and applications across various industrial and systems engineering (ISE) domains. Not only does the book chart current AI trends and tools for effective integration, but it also raises pivotal ethical concerns and explores the latest methodologies, tools, and real-world examples relevant to today’s dynamic ISE landscape. Readers will gain a practical toolkit for effective integration and utilization of AI in system design and operation. The book also presents the current state of AI across big data analytics, machine learning, artificial intelligence tools, cloud-based AI applications, neural-based technologies, modeling and simulation in the metaverse, intelligent systems engineering, and more, and discusses future trends. Written by renowned international contributors for an international audience, Advances in Artificial Intelligence Applications in Industrial and Systems Engineering includes information on: Reinforcement learning, computer vision and perception, and safety considerations for autonomous systems (AS) (NLP) topics including language understanding and generation, sentiment analysis and text classification, and machine translation AI in healthcare, covering medical imaging and diagnostics, drug discovery and personalized medicine, and patient monitoring and predictive analysis Cybersecurity, covering threat detection and intrusion prevention, fraud detection and risk management, and network security Social good applications including poverty alleviation and education, environmental sustainability, and disaster response and humanitarian aid. Advances in Artificial Intelligence Applications in Industrial and Systems Engineering is a timely, essential reference for engineering, computer science, and business professionals worldwide.

Organizations are creating and managing more data than ever. As stewards of this data, we are tasked with ensuring that it is highly available, secure from threats, and only accessible to those that it is intended for.

This session dives into the many areas that keep security officers awake at night, including: • Principle of least privilege • Data governance • Data compliance laws and regulations • Common exploits • Security best practices for developers • Encryption • Industry-specific security guidelines

As data platforms grow and evolve, the benefit of centralizing and standardizing security solutions is greater than ever. The frequency of data breaches has increased over time, and despite continuing to improve our security posture, the complexity and effectiveness of attacks continues to keep pace.

Data security is a key implementation of risk management. All organizations are targeted by cyber threat actors. Success is dissuading those malicious parties from persisting in their attacks. Knowing how to effectively layer security and create effective access methods between users and data will provide the highest chances of success given an ever-changing threat landscape.

Please note that we will be using Microsoft Teams for the online portion of this meeting. You may want to join a few minutes early to ensure you do not have any issues. If you are attending in person, there are large TVs at the office, and you do not need to bring a laptop or use Teams.

The manufacturing floor is undergoing a technological revolution with industrial AI at its center. From predictive maintenance to quality control, AI is transforming how products are designed, produced, and maintained. But implementing these technologies isn't just about installing sensors and software—it's about empowering your workforce to embrace new tools and processes. How do you overcome AI hesitancy among experienced workers? What skills should your team develop to make the most of these new capabilities? And with limited resources, how do you prioritize which AI applications will deliver the greatest impact for your specific manufacturing challenges? The answers might be simpler than you think. Barbara Humpton is President and CEO of Siemens Corporation, responsible for strategy and engagement in Siemens’ largest market. Under her leadership, Siemens USA operates across all 50 states and Puerto Rico with 45,000 employees and generated $21.1 billion in revenue in fiscal year 2024. She champions the role of technology in expanding what’s humanly possible and is a strong advocate for workforce development, mentorship, and building sustainable work-life integration. Previously, she was President and CEO of Siemens Government Technologies, leading delivery of Siemens’ products and services to U.S. federal agencies. Before joining Siemens in 2011, she held senior roles at Booz Allen Hamilton and Lockheed Martin, where she oversaw programs in national security, biometrics, border protection, and critical infrastructure, including the FBI’s Next Generation Identification and TSA’s Transportation Workers’ Identification Credential. Olympia Brikis is a seasoned technology and business leader with over a decade of experience in AI research. As the Technology and Engineering Director for Siemens' Industrial AI Research in the U.S., she leads AI strategy, technology roadmapping, and R&D for next-gen AI products. Olympia has a strong track record in developing Generative AI products that integrate industrial and digital ecosystems, driving real-world business impact. She is a recognized thought leader with numerous patents and peer-reviewed publications in AI for manufacturing, predictive analytics, and digital twins. Olympia actively engages with executives, policymakers, and AI practitioners on AI's role in enterprise strategy and workforce transformation. With a background in Computer Science from LMU Munich and an MBA from Wharton, she bridges AI research, product strategy, and enterprise adoption, mentoring the next generation of AI leaders. In the episode, Richie, Barbara, and Olympia explore the transformative power of AI in manufacturing, from predictive maintenance to digital twins, the role of industrial AI in enhancing productivity, the importance of empowering workers with new technology, real-world applications, overcoming AI hesitancy, and much more. Links Mentioned in the Show: Siemens Industrial AI SuiteConnect with Barbara and OlympiaCourse: Implementing AI Solutions in BusinessRelated Episode: Master Your Inner Game to Avoid Burnout with Klaus Kleinfeld, Former CEO at Alcoa and SiemensRewatch RADAR AI where...

The Official MongoDB Guide

The official guide to MongoDB architecture, tools, and cloud features, written by leading MongoDB subject matter experts to help you build secure, scalable, high-performance applications Key Features Design resilient, secure solutions with high performance and scalability Streamline development with modern tooling, indexing, and AI-powered workflows Deploy and optimize in the cloud using advanced MongoDB Atlas features Purchase of the print or Kindle book includes a free PDF eBook Book Description Delivering secure, scalable, and high-performance applications is never easy, especially when systems must handle growth, protect sensitive data, and perform reliably under pressure. The Official MongoDB Guide addresses these challenges with guidance from MongoDB’s top subject matter experts, so you learn proven best practices directly from those who know the technology inside out. This book takes you from core concepts and architecture through to advanced techniques for data modeling, indexing, and query optimization, supported by real-world patterns that improve performance and resilience. It offers practical coverage of developer tooling, IDE integrations, and AI-assisted workflows that will help you work faster and more effectively. Security-focused chapters walk you through authentication, authorization, encryption, and compliance, while chapters dedicated to MongoDB Atlas showcase its robust security features and demonstrate how to deploy, scale, and leverage platform-native capabilities such as Atlas Search and Atlas Vector Search. By the end of this book, you’ll be able to design, build, and manage MongoDB applications with the confidence that comes from learning directly from the experts shaping the technology. What you will learn Build secure, scalable, and high-performance applications Design efficient data models and indexes for real workloads Write powerful queries to sort, filter, and project data Protect applications with authentication and encryption Accelerate coding with AI-powered and IDE-based tools Launch, scale, and manage MongoDB Atlas with confidence Unlock advanced features like Atlas Search and Atlas Vector Search Apply proven techniques from MongoDB's own engineering leaders Who this book is for This book is for developers, database professionals, architects, and platform teams who want to get the most out of MongoDB. Whether you’re building web apps, APIs, mobile services, or backend systems, the concepts covered here will help you structure data, improve performance, and deliver value to your users. No prior experience with MongoDB is required, but familiarity with databases and programming will be helpful.

Strategies for Building Resilient Software in a Complex Ecosystem In an era where software development is accelerating rapidly, Veracode's latest research reveals a concerning trend: 50% of organisations are burdened by critical security debt, with 70% of these vulnerabilities originating from third-party code and the software supply chain. The average time to fix security flaws has increased to 8.5 months, marking a 47% rise over the past five years. This session will delve into the key findings of the State of Software Security report, offering a comprehensive understanding of the current landscape. Amanda will explore the five critical metrics identified by Veracode that benchmark security maturity and what defines a ‘leading’ or ‘lagging’ organisations. Attendees will gain insights into: - The impact of third-party code on security debt and strategies to mitigate associated risks. - The importance of remediation speed, with fast-acting teams reducing critical security debt by up to 75%. - The role of AI in enhancing remediation efforts and addressing the backlog of security debt. - Practical recommendations for improving security posture, including enhancing visibility across the software development lifecycle and prioritising vulnerabilities effectively.

Data Engineering for Cybersecurity

Security teams rely on telemetry—the continuous stream of logs, events, metrics, and signals that reveal what’s happening across systems, endpoints, and cloud services. But that data doesn’t organize itself. It has to be collected, normalized, enriched, and secured before it becomes useful. That’s where data engineering comes in. In this hands-on guide, cybersecurity engineer James Bonifield teaches you how to design and build scalable, secure data pipelines using free, open source tools such as Filebeat, Logstash, Redis, Kafka, and Elasticsearch and more. You’ll learn how to collect telemetry from Windows including Sysmon and PowerShell events, Linux files and syslog, and streaming data from network and security appliances. You’ll then transform it into structured formats, secure it in transit, and automate your deployments using Ansible. You’ll also learn how to: Encrypt and secure data in transit using TLS and SSH Centrally manage code and configuration files using Git Transform messy logs into structured events Enrich data with threat intelligence using Redis and Memcached Stream and centralize data at scale with Kafka Automate with Ansible for repeatable deployments Whether you’re building a pipeline on a tight budget or deploying an enterprise-scale system, this book shows you how to centralize your security data, support real-time detection, and lay the groundwork for incident response and long-term forensics.

The release of Kimi K2 mixture-of-expert (MoE) models has firmly established them as the leading architecture of large language models (LLMs) at the intelligence frontier. Due to their massive size (+1 trillion parameters) and sparse computation pattern, selectively activating parameter subsets rather than the entire model for each token, MoE-style LLMs present significant challenges for inference workloads, significantly altering the underlying inference economics. With the ever-growing consumer demand for AI models, as well as the internal need of AGI companies to generate trillions of tokens of synthetic data, the \"cost per token\" is becoming an even more important factor, determining the profit margins and the cost of capex required for internal reinforcment learning (RL) training rollouts. In this talk we will go through the details of the cost structure of generating a \"DeepSeek token,\" we will discuss the tradeoffs between latency/throughput and cost, and we will try to estimate the optimal setup to run it.\n\nIf you want to join this event, please sign up on our Luma page: https://lu.ma/2ae8czbn\n​⚠️ Registration is free, but required due to building security.\n\nSpeakers:\n\n* Piotr Mazurek (https://x.com/tugot17), Senior AI Inference Engineer

What are the hidden dangers lurking beneath the surface of vibe coded apps and hyped-up CEO promises? And what is Influence Ops?I'm joined by Susanna Cox (Disesdi), an AI security architect, researcher, and red teamer who has been working at the intersection of AI and security for over a decade. She provides a masterclass on the current state of AI security, from explaining the "color teams" (red, blue, purple) to breaking down the fundamental vulnerabilities that make GenAI so risky.We dive into the recent wave of AI-driven disasters, from the Tea dating app that exposed its users' sensitive data to the massive Catholic Health breach. We also discuss why the trend of blindly vibe coding is an irresponsible and unethical shortcut that will create endless liabilities in the near term.Susanna also shares her perspective on AI policy, the myth of separating "responsible" from "secure" AI, and the one threat that truly keeps her up at night: the terrifying potential of weaponized globally scaled Influence Ops to manipulate public opinion and democracy itself.Find Disesdi Susanna Cox:Substack: https://disesdi.substack.com/Socials (LinkedIn, X, etc.): @DisesdiKEY MOMENTS:00:26 - Who is Disesdi Susanna Cox?03:52 - What are Red, Blue, and Purple Teams in Security?07:29 - Probabilistic vs. Deterministic Thinking: Why Data & Security Teams Clash12:32 - How GenAI Security is Different (and Worse) than Classical ML14:39 - Recent AI Disasters: Catholic Health, Agent Smith & the "T" Dating App18:34 - The Unethical Problem with "Vibe Coding"24:32 - "Vibe Companies": The Gaslighting from CEOs About AI30:51 - Why "Responsible AI" and "Secure AI" Are the Same Thing33:13 - Deconstructing the "Woke AI" Panic44:39 - What Keeps an AI Security Expert Up at Night? Influence Ops52:30 - The Vacuous, Haiku-Style Hellscape of LinkedIn

Combining LLMs with enterprise knowledge bases is creating powerful new agents that can transform business operations. These systems are dramatically improving on traditional chatbots by understanding context, following conversations naturally, and accessing up-to-date information. But how do you effectively manage the knowledge that powers these agents? What governance structures need to be in place before deployment? And as we look toward a future with physical AI and robotics, what fundamental computing challenges must we solve to ensure these technologies enhance rather than complicate our lives? Jun Qian is an accomplished technology leader with extensive experience in artificial intelligence and machine learning. Currently serving as Vice President of Generative AI Services at Oracle since May 2020, Jun founded and leads the Engineering and Science group, focusing on the creation and enhancement of Generative AI services and AI Agents. Previously held roles include Vice President of AI Science and Development at Oracle, Head of AI and Machine Learning at Sift, and Principal Group Engineering Manager at Microsoft, where Jun co-founded Microsoft Power Virtual Agents. Jun's career also includes significant contributions as the Founding Manager of Amazon Machine Learning at AWS and as a Principal Investigator at Verizon. In the episode, Richie and Jun explore the evolution of AI agents, the unique features of ChatGPT, the challenges and advancements in chatbot technology, the importance of data management and security in AI, and the future of AI in computing and robotics, and much more. Links Mentioned in the Show: OracleConnect with JunCourse: Introduction to AI AgentsJun at DataCamp RADARRelated Episode: A Framework for GenAI App and Agent Development with Jerry Liu, CEO at LlamaIndexRewatch RADAR AI  New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business