talk-data.com talk-data.com

Topic

Analytics

data_analysis insights metrics

395

tagged

Activity Trend

398 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Engineering Books ×
Understanding Log Analytics at Scale

If enabled, logging captures almost every system process, event, or message in your software or hardware. But once you have all that data, what do you do with it? This report shows you how to use log analytics—the process of gathering, correlating, and analyzing that information—to drive critical business insights and outcomes. Drawing on real-world use cases, Matt Gillespie outlines the opportunities for log analytics and the challenges you may face—along with approaches for meeting them. Data architects and IT and infrastructure leads will learn the mechanics of log analytics and key architectural considerations for data storage. The report also offers nine key guideposts that will help you plan and design your own solutions to obtain the full value from your log data. Learn the current state of log analytics and common challenges See how log analytics is helping organizations achieve better business outcomes in areas such as cybersecurity, IT operations, and industrial automation Explore tools for log analytics, including Splunk, the Elastic stack, and Sumo Logic Understand the role storage plays in ensuring successful outcomes

The Rise of Operational Analytics

Fast access to data has become a critical game changer. Today, a new breed of company understands that the faster they can build, access, and share well-defined datasets, the more competitive they’ll be in our data-driven world. In this practical report, Scott Haines from Twilio introduces you to operational analytics, a new approach for making sense of all the data flooding into business systems. Data architects and data scientists will see how Apache Kafka and other tools and processes laid the groundwork for fast analytics on a mix of historical and near-real-time data. You’ll learn how operational analytics feeds minute-by-minute customer interactions, and how NewSQL databases have entered the scene to drive machine learning algorithms, AI programs, and ongoing decision-making within an organization. Understand the key advantages that data-driven companies have over traditional businesses Explore the rise of operational analytics—and how this method relates to current tech trends Examine the impact of can’t wait business decisions and won’t wait customer experiences Discover how NewSQL databases support cloud native architecture and set the stage for operational databases Learn how to choose the right database to support operational analytics in your organization

Jumpstart Snowflake: A Step-by-Step Guide to Modern Cloud Analytics

Explore the modern market of data analytics platforms and the benefits of using Snowflake computing, the data warehouse built for the cloud. With the rise of cloud technologies, organizations prefer to deploy their analytics using cloud providers such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform. Cloud vendors are offering modern data platforms for building cloud analytics solutions to collect data and consolidate into single storage solutions that provide insights for business users. The core of any analytics framework is the data warehouse, and previously customers did not have many choices of platform to use. Snowflake was built specifically for the cloud and it is a true game changer for the analytics market. This book will help onboard you to Snowflake, present best practices to deploy, and use the Snowflake data warehouse. In addition, it covers modern analytics architecture and use cases. It provides use cases of integration with leading analytics software such as Matillion ETL, Tableau, and Databricks. Finally, it covers migration scenarios for on-premise legacy data warehouses. What You Will Learn Know the key functionalities of Snowflake Set up security and access with cluster Bulk load data into Snowflake using the COPY command Migrate from a legacy data warehouse to Snowflake integrate the Snowflake data platform with modern business intelligence (BI) and data integration tools Who This Book Is For Those working with data warehouse and business intelligence (BI) technologies, and existing and potential Snowflake users

IBM Power System L922 Technical Overview and Introduction

This IBM® Redpaper™ publication is a comprehensive guide covering the IBM Power System L922 (9008-22L) server, which was designed for data-intensive workloads such as databases and analytics in the Linux operating system. The objective of this paper is to introduce the major innovative Power L922 offering and its relevant functions: The new IBM POWER9™ processor, available at frequencies of 2.7 - 3.8 GHz, 2.9 - 3.8 GHz, and 3.4 - 3.9 GHz. Significantly strengthened cores and larger caches. Two integrated memory controllers that allow double the memory footprint of IBM POWER8® processor-based servers. An integrated I/O subsystem and hot-pluggable Peripheral Component Interconnect Express (PCIe) Gen4 and Gen3 I/O slots. I/O drawer expansion options offer greater flexibility. Support for Coherent Accelerator Processor Interface (CAPI) 2.0. New feature IBM EnergyScale™ technology provides new variable processor frequency modes that provide a significant performance boost beyond the static nominal frequency. This publication is for professionals who want to acquire a better understanding of IBM Power Systems™ products. The intended audience includes the following roles: Clients Sales and marketing professionals Technical support professionals IBM Business Partners Independent software vendors (ISVs) This paper expands the current set of IBM Power Systems documentation by providing a desktop reference that offers a detailed technical description of the Power L922 system. This paper does not replace the current marketing materials and configuration tools. It is intended as an extra source of information that, together with existing sources, can be used to enhance your knowledge of IBM server solutions.

SQL Server Big Data Clusters: Early First Edition Based on Release Candidate 1

Get a head-start on learning one of SQL Server 2019’s latest and most impactful features—Big Data Clusters—that combines large volumes of non-relational data for analysis along with data stored relationally inside a SQL Server database. This book provides a first look at Big Data Clusters based upon SQL Server 2019 Release Candidate 1. Start now and get a jump on your competition in learning this important new feature. Big Data Clusters is a feature set covering data virtualization, distributed computing, and relational databases and provides a complete AI platform across the entire cluster environment. This book shows you how to deploy, manage, and use Big Data Clusters. For example, you will learn how to combine data stored on the HDFS file system together with data stored inside the SQL Server instances that make up the Big Data Cluster. Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019 using Release Candidate 1. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, you are taught about querying. You will learn to write queries in Transact-SQL—taking advantage of skills you have honed for years—and with those queries you will be able to examine and analyze data from a wide variety of sources such as Apache Spark. Through the theoretical foundation provided in this book and easy-to-follow example scripts and notebooks, you will be ready to use and unveil the full potential of SQL Server 2019: combining different types of data spread across widely disparate sources into a single view that is useful for business intelligence and machine learning analysis. What You Will Learn Install, manage, and troubleshoot Big Data Clusters in cloud or on-premise environments Analyze large volumes of data directly from SQL Server and/or Apache Spark Manage data stored in HDFS from SQL Server as if it were relational data Implement advanced analytics solutions through machine learning and AI Expose different data sources as a single logical source using data virtualization Who This Book Is For For data engineers, data scientists, data architects, and database administrators who want to employ data virtualization and big data analytics in their environment

Elasticsearch 7 Quick Start Guide

Elasticsearch 7 Quick Start Guide introduces the core capabilities of Elasticsearch, one of the most powerful distributed search and analytics tools available. Through this concise and practical guide, you will learn how to install, configure, and effectively utilize Elasticsearch while exploring its powerful features, including real-time search and data aggregation. What this Book will help me do Install and configure Elasticsearch to create secure and scalable deployments. Understand and utilize analyzers, filters, and mappings to optimize search results. Perform data aggregations using advanced techniques in metric and bucket operations. Identify and troubleshoot common Elasticsearch performance issues for smooth operation. Leverage best practices to ensure effective deployment in production environments. Author(s) None Srivastava and None Miller are experienced writers and technologists who bring real-world expertise in search systems and analytics. With practical backgrounds in distributed systems and data management, the authors deliver a straightforward and hands-on approach in their writing. They aim to make Elasticsearch concepts approachable and practical for developers and administrators alike. Who is it for? This book is ideal for software developers, data engineers, and IT professionals who are seeking to implement Elasticsearch within their projects. It is particularly suited for those with basic to intermediate technical experience and a need for robust search and analytics solutions. If you're aiming to learn the fundamentals and acquire practical skills in Elasticsearch 7, this book will serve as an excellent resource for you.

Expert T-SQL Window Functions in SQL Server 2019: The Hidden Secret to Fast Analytic and Reporting Queries

Become an expert who can use window functions to solve T-SQL query problems. Replace slow cursors and self-joins with queries that are easy to write and perform better. This new edition provides expanded examples, including a chapter from the world of sports, and covers the latest performance enhancements through SQL Server 2019. Window functions are useful in analytics and business intelligence reporting. They came into full blossom with SQL Server 2012, yet they are not as well known and used as often as they ought to be. This group of functions is one of the most notable developments in SQL, and this book shows how every developer and DBA can benefit from their expressive power in solving day-to-day business problems. Once you begin using window functions, such as ROW_NUMBER and LAG, you will discover many ways to use them. You will approach SQL Server queries in a different way, thinking about sets of data instead of individual rows. Your querieswill run faster, be easier to write, and easier to deconstruct, maintain, and enhance in the future. Just knowing and using these functions is not enough. You also need to understand how to tune the queries. Expert T-SQL Window Functions in SQL Server clearly explains how to get the best performance. The book also covers the rare cases when older techniques are the best bet. What You Will Learn Solve complex query problems without cumbersome self-joins that run slowly and are difficult to read Create sliding windows in a result set for computing such as running totals and moving averages Return aggregate and detail data simultaneously from the same SELECT statement Compute lag and lead and other values that access data from multiple rows in a result set Understand the OVER clause syntax and how to control the window Avoid framing errors that can lead to unexpected results Who This Book Is For Anyone who writes T-SQL queries, including database administrators, developers, business analysts, and data scientists. Before reading this book, you should understand how to join tables, write WHERE clauses, and build aggregate queries.

SQL Server 2019 Revealed: Including Big Data Clusters and Machine Learning

Get up to speed on the game-changing developments in SQL Server 2019. No longer just a database engine, SQL Server 2019 is cutting edge with support for machine learning (ML), big data analytics, Linux, containers, Kubernetes, Java, and data virtualization to Azure. This is not a book on traditional database administration for SQL Server. It focuses on all that is new for one of the most successful modernized data platforms in the industry. It is a book for data professionals who already know the fundamentals of SQL Server and want to up their game by building their skills in some of the hottest new areas in technology. SQL Server 2019 Revealed begins with a look at the project's team goal to integrate the world of big data with SQL Server into a major product release. The book then dives into the details of key new capabilities in SQL Server 2019 using a “learn by example” approach for Intelligent Performance, security, mission-criticalavailability, and features for the modern developer. Also covered are enhancements to SQL Server 2019 for Linux and gain a comprehensive look at SQL Server using containers and Kubernetes clusters. The book concludes by showing you how to virtualize your data access with Polybase to Oracle, MongoDB, Hadoop, and Azure, allowing you to reduce the need for expensive extract, transform, and load (ETL) applications. You will then learn how to take your knowledge of containers, Kubernetes, and Polybase to build a comprehensive solution called Big Data Clusters, which is a marquee feature of 2019. You will also learn how to gain access to Spark, SQL Server, and HDFS to build intelligence over your own data lake and deploy end-to-end machine learning applications. What You Will Learn Implement Big Data Clusters with SQL Server, Spark, and HDFS Create a Data Hub with connections to Oracle, Azure, Hadoop, and other sources Combine SQL and Spark to build a machine learning platform for AI applications Boost your performance with no application changes using Intelligent Performance Increase security of your SQL Server through Secure Enclaves and Data Classification Maximize database uptime through online indexing and Accelerated Database Recovery Build new modern applications with Graph, ML Services, and T-SQL Extensibility with Java Improve your ability to deploy SQL Server on Linux Gain in-depth knowledge to run SQL Server with containers and Kubernetes Know all the new database engine features for performance, usability, and diagnostics Use the latest tools and methods to migrate your database to SQL Server 2019 Apply your knowledge of SQL Server 2019 to Azure Who This Book Is For IT professionals and developers who understand the fundamentals of SQL Server and wish to focus on learning about the new, modern capabilities of SQL Server 2019. The book is for those who want to learn about SQL Server 2019 and the new Big Data Clusters and AI feature set, support for machine learning and Java, how to run SQL Server with containers and Kubernetes, and increased capabilities around Intelligent Performance, advanced security, and high availability.

IBM z15 Technical Introduction

This IBM® Redbooks® publication introduces the latest member of the IBM Z® platform, the IBM z15™ (machine type 8561). It includes information about the Z environment and how it helps integrate data and transactions more securely. It also provides insight for faster and more accurate business decisions. The z15 is a state-of-the-art data and transaction system that delivers advanced capabilities, which are vital to any digital transformation. The z15 is designed for enhanced modularity, which is in an industry-standard footprint. The z15 system excels at the following tasks: Using multicloud integration services Securing data with pervasive encryption Providing resilience with key to zero downtime Transforming a transactional platform into a data powerhouse Getting more out of the platform with IT Operational Analytics Accelerating digital transformation with agile service delivery Revolutionizing business processes Blending open source and Z technologies This book explains how this system uses new innovations and traditional Z strengths to satisfy growing demand for cloud, analytics, and open source technologies. With the z15 as the base, applications can run in a trusted, reliable, and secure environment that improves operations and lessens business risk.

IBM Spectrum Discover: Metadata Management for Deep Insight of Unstructured Storage

This IBM® Redpaper publication provides a comprehensive overview of the IBM Spectrum® Discover metadata management software platform. We give a detailed explanation of how the product creates, collects, and analyzes metadata. Several in-depth use cases are used that show examples of analytics, governance, and optimization. We also provide step-by-step information to install and set up the IBM Spectrum Discover trial environment. More than 80% of all data that is collected by organizations is not in a standard relational database. Instead, it is trapped in unstructured documents, social media posts, machine logs, and so on. Many organizations face significant challenges to manage this deluge of unstructured data such as: Pinpointing and activating relevant data for large-scale analytics Lacking the fine-grained visibility that is needed to map data to business priorities Removing redundant, obsolete, and trivial (ROT) data Identifying and classifying sensitive data IBM Spectrum Discover is a modern metadata management software that provides data insight for petabyte-scale file and Object Storage, storage on premises, and in the cloud. This software enables organizations to make better business decisions and gain and maintain a competitive advantage. IBM Spectrum Discover provides a rich metadata layer that enables storage administrators, data stewards, and data scientists to efficiently manage, classify, and gain insights from massive amounts of unstructured data. It improves storage economics, helps mitigate risk, and accelerates large-scale analytics to create competitive advantage and speed critical research.

IBM Power Systems Enterprise AI Solutions

This IBM® Redpaper publication helps the line of business (LOB), data science, and information technology (IT) teams develop an information architecture (IA) for their enterprise artificial intelligence (AI) environment. It describes the challenges that are faced by the three roles when creating and deploying enterprise AI solutions, and how they can collaborate for best results. This publication also highlights the capabilities of the IBM Cognitive Systems and AI solutions: IBM Watson® Machine Learning Community Edition IBM Watson Machine Learning Accelerator (WMLA) IBM PowerAI Vision IBM Watson Machine Learning IBM Watson Studio Local IBM Video Analytics H2O Driverless AI IBM Spectrum® Scale IBM Spectrum Discover This publication examines the challenges through five different use case examples: Artificial vision Natural language processing (NLP) Planning for the future Machine learning (ML) AI teaming and collaboration This publication targets readers from LOBs, data science teams, and IT departments, and anyone that is interested in understanding how to build an IA to support enterprise AI development and deployment.

IBM Reference Architecture for High Performance Data and AI in Healthcare and Life Sciences

This IBM® Redpaper publication provides an update to the original description of IBM Reference Architecture for Genomics. This paper expands the reference architecture to cover all of the major vertical areas of healthcare and life sciences industries, such as genomics, imaging, and clinical and translational research. The architecture was renamed IBM Reference Architecture for High Performance Data and AI in Healthcare and Life Sciences to reflect the fact that it incorporates key building blocks for high-performance computing (HPC) and software-defined storage, and that it supports an expanding infrastructure of leading industry partners, platforms, and frameworks. The reference architecture defines a highly flexible, scalable, and cost-effective platform for accessing, managing, storing, sharing, integrating, and analyzing big data, which can be deployed on-premises, in the cloud, or as a hybrid of the two. IT organizations can use the reference architecture as a high-level guide for overcoming data management challenges and processing bottlenecks that are frequently encountered in personalized healthcare initiatives, and in compute-intensive and data-intensive biomedical workloads. This reference architecture also provides a framework and context for modern healthcare and life sciences institutions to adopt cutting-edge technologies, such as cognitive life sciences solutions, machine learning and deep learning, Spark for analytics, and cloud computing. To illustrate these points, this paper includes case studies describing how clients and IBM Business Partners alike used the reference architecture in the deployments of demanding infrastructures for precision medicine. This publication targets technical professionals (consultants, technical support staff, IT Architects, and IT Specialists) who are responsible for providing life sciences solutions and support.

Learn PySpark: Build Python-based Machine Learning and Deep Learning Models

Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges. You'll start by reviewing PySpark fundamentals, such as Spark’s core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github. What You'll Learn Develop pipelines for streaming data processing using PySpark Build Machine Learning & Deep Learning models using PySpark latest offerings Use graph analytics using PySpark Create Sequence Embeddings from Text data Who This Book is For Data Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data.

Real-Time Data Analytics for Large Scale Sensor Data

Real-Time Data Analytics for Large-Scale Sensor Data covers the theory and applications of hardware platforms and architectures, the development of software methods, techniques and tools, applications, governance and adoption strategies for the use of massive sensor data in real-time data analytics. It presents the leading-edge research in the field and identifies future challenges in this fledging research area. The book captures the essence of real-time IoT based solutions that require a multidisciplinary approach for catering to on-the-fly processing, including methods for high performance stream processing, adaptively streaming adjustment, uncertainty handling, latency handling, and more. Examines IoT applications, the design of real-time intelligent systems, and how to manage the rapid growth of the large volume of sensor data Discusses intelligent management systems for applications such as healthcare, robotics and environment modeling Provides a focused approach towards the design and implementation of real-time intelligent systems for the management of sensor data in large-scale environments

Advanced Elasticsearch 7.0

Dive deep into the advanced capabilities of Elasticsearch 7.0 with this expert-level guide. In this book, you will explore the most effective techniques and tools for building, indexing, and querying advanced distributed search engines. Whether optimizing performance, scaling applications, or integrating with big data analytics, this guide empowers you with practical skills and insights. What this Book will help me do Master ingestion pipelines and preprocess documents for faster and more efficient indexing. Model search data optimally for complex and varied real-world applications. Perform exploratory data analyses using Elasticsearch's robust features. Integrate Elasticsearch with modern analytics platforms like Kibana and Logstash. Leverage Elasticsearch with Apache Spark and machine learning libraries for real-time advanced analytics. Author(s) None Wong is a seasoned Elasticsearch expert with years of real-world experience developing enterprise-grade search and analytics systems. With a passion for innovation and teaching, Wong enjoys breaking down complex technical concepts into digestible learning experiences. His work reflects a pragmatic and results-driven approach to teaching Elasticsearch. Who is it for? This book is ideal for Elasticsearch developers and data engineers with some prior experience who are looking to elevate their skills to an advanced level. It suits professionals seeking to enhance their expertise in building scalable search and analytics solutions. If you aim to master sophisticated Elasticsearch operations and real-time integrations, this book is tailored for you.

Data Warehousing with Greenplum, 2nd Edition

Data professionals are confronting the most disruptive change since relational databases appeared in the 1980s. SQL is still a major tool for data analytics, but conventional relational database management systems can’t handle the increasing size and complexity of today’s datasets. This updated edition teaches you best practices for Greenplum Database, the open source massively parallel processing (MPP) database that accommodates large sets of nonrelational and relational data. Marshall Presser, field CTO at Pivotal, introduces Greenplum’s approach to data analytics and data-driven decisions, beginning with its shared-nothing architecture. IT managers, developers, data analysts, system architects, and data scientists will all gain from exploring data organization and storage, data loading, running queries, and learning to perform analytics in the database. Discover how MPP and Greenplum will help you go beyond the traditional data warehouse. This ebook covers: Greenplum features, use case examples, and techniques for optimizing use Four Greenplum deployment options to help you balance security, cost, and time to usability Why each networked node in Greenplum’s architecture includes an independent operating system, memory, and storage Additional tools for monitoring, managing, securing, and optimizing query responses in the Pivotal Greenplum commercial database

Operationalizing the Data Lake

Big data and advanced analytics have increasingly moved to the cloud as organizations pursue actionable insights and data-driven products using the growing amounts of information they collect. But few companies have truly operationalized data so it’s usable for the entire organization. With this pragmatic ebook, engineers, architects, and data managers will learn how to build and extract value from a data lake in the cloud and leverage the compute power and scalability of a cloud-native data platform to put your company’s vast data trove into action. Holden Ackerman and Jon King of Qubole take you through the basics of building a data lake operation, from people to technology, employing multiple technologies and frameworks in a cloud-native data platform. You'll dive into the tools and processes you need for the entire lifecycle of a data lake, from data preparation, storage, and management to distributed computing and analytics. You’ll also explore the unique role that each member of your data team needs to play as you migrate to your cloud-native data platform. Leverage your data effectively through a single source of truth Understand the importance of building a self-service culture for your data lake Define the structure you need to build a data lake in the cloud Implement financial governance and data security policies for your data lake through a cloud-native data platform Identify the tools you need to manage your data infrastructure Delineate the scope, usage rights, and best tools for each team working with a data lake—analysts, data scientists, data engineers, and security professionals, among others

IBM Spectrum Scale: Big Data and Analytics Solution Brief

This IBM® Redguide™ publication describes big data and analytics deployments that are built on IBM Spectrum Scale™. IBM Spectrum Scale is a proven enterprise-level distributed file system that is a high-performance and cost-effective alternative to Hadoop Distributed File System (HDFS) for Hadoop analytics services. IBM Spectrum Scale includes NFS, SMB, and Object services and meets the performance that is required by many industry workloads, such as technical computing, big data, analytics, and content management. IBM Spectrum Scale provides world-class, web-based storage management with extreme scalability, flash accelerated performance, and automatic policy-based storage tiering from flash through disk to the cloud, which reduces storage costs up to 90% while improving security and management efficiency in cloud, big data, and analytics environments. This Redguide publication is intended for technical professionals (analytics consultants, technical support staff, IT Architects, and IT Specialists) who are responsible for providing Hadoop analytics services and are interested in learning about the benefits of the use of IBM Spectrum Scale as an alternative to HDFS.

IBM FlashSystem 900 Model AE3 Product Guide

Today's global organizations depend on the ability to unlock business insights from massive volumes of data. Now, with IBM® FlashSystem 900 Model AE3, they can make faster decisions based on real-time insights. Thus, they unleash the power of demanding applications, including these: Online transaction processing (OLTP) and analytical databases Virtual desktop infrastructures (VDIs) Technical computing applications Cloud environments Easy to deploy and manage, IBM FlashSystem® 900 Model AE3 is designed to accelerate the applications that drive your business. Powered by IBM FlashCore® Technology, IBM FlashSystem Model AE3 provides the following characteristics: Accelerate business-critical workloads, real-time analytics, and cognitive applications with the consistent microsecond latency and extreme reliability of IBM FlashCore technology Improve performance and help lower cost with new inline data compression Help reduce capital and operational expenses with IBM enhanced 3D triple-level cell (3D TLC) flash Protect critical data assets with patented IBM Variable Stripe RAID™ Power faster insights with IBM FlashCore including hardware-accelerated nonvolatile memory (NVM) architecture, purpose-engineered IBM MicroLatency® modules and advanced flash management FlashSystem 900 Model AE3 can be configured in capacity points as low as 14.4 TB to 180 TB usable and up to 360 TB effective capacity after RAID 5 protection and compression. You can couple this product with either 16 Gbps, 8 Gbps Fibre Channel, 16 Gbps NVMe over Fibre Channel, or 40 Gbps InfiniBand connectivity. Thus, the IBM FlashSystem 900 Model AE3 provides extreme performance to existing and next generation infrastructure.

Streaming Data

Managers and staff responsible for planning, hiring, and allocating resources need to understand how streaming data can fundamentally change their organizations. Companies everywhere are disrupting business, government, and society by using data and analytics to shape their business. Even if you don’t have deep knowledge of programming or digital technology, this high-level introduction brings data streaming into focus. You won’t find math or programming details here, or recommendations for particular tools in this rapidly evolving space. But you will explore the decision-making technologies and practices that organizations need to process streaming data and respond to fast-changing events. By describing the principles and activities behind this new phenomenon, author Andy Oram shows you how streaming data provides hidden gems of information that can transform the way your business works. Learn where streaming data comes from and how companies put it to work Follow a simple data processing project from ingesting and analyzing data to presenting results Explore how (and why) big data processing tools have evolved from MapReduce to Kubernetes Understand why streaming data is particularly useful for machine learning projects Learn how containers, microservices, and cloud computing led to continuous integration and DevOps