talk-data.com talk-data.com

Topic

data-science

2252

tagged

Activity Trend

1 peak/qtr
2020-Q1 2026-Q1

Activities

2252 activities · Newest first

Trade-off Analytics

Presents information to create a trade-off analysis framework for use in government and commercial acquisition environments This book presents a decision management process based on decision theory and cost analysis best practices aligned with the ISO/IEC 15288, the Systems Engineering Handbook, and the Systems Engineering Body of Knowledge. It provides a sound trade-off analysis framework to generate the tradespace and evaluate value and risk to support system decision-making throughout the life cycle. Trade-off analysis and risk analysis techniques are examined. The authors present an integrated value trade-off and risk analysis framework based on decision theory. These trade-off analysis concepts are illustrated in the different life cycle stages using multiple examples from defense and commercial domains. Provides techniques to identify and structure stakeholder objectives and creative, doable alternatives Presents the advantages and disadvantages of tradespace creation and exploration techniques for trade-off analysis of concepts, architectures, design, operations, and retirement Covers the sources of uncertainty in the system life cycle and examines how to identify, assess, and model uncertainty using probability Illustrates how to perform a trade-off analysis using the INCOSE Decision Management Process using both deterministic and probabilistic techniques Trade-off Analytics: Creating and Exploring the System Tradespace is written for upper undergraduate students and graduate students studying systems design, systems engineering, industrial engineering and engineering management. This book also serves as a resource for practicing systems designers, systems engineers, project managers, and engineering managers. is a Research Professor in the Department of Industrial Engineering at the University of Arkansas. He is also a senior principal with Innovative Decisions, Inc., a decision and risk analysis firm and has served as Chairman of the Board. Dr. Parnell has published more than 100 papers and book chapters and was lead editor of Gregory S. Parnell, PhD, Decision Making for Systems Engineering and Management, Wiley Series in Systems Engineering (2nd Ed, Wiley 2011) and lead author of the Handbook of Decision Analysis (Wiley 2013). He is a fellow of INFORMS, the INCOSE, MORS, and the Society for Decision Professionals.

Mastering Tableau

Mastering Tableau is your comprehensive guide to becoming highly skilled in Tableau, focusing on advanced data visualization and practical applications. You will learn how to create complex dashboards, integrate R, and make the most of Tableau's features to deliver compelling insights. By the end of the book, you'll be ready to tackle real-world business intelligence challenges. What this Book will help me do Master advanced Tableau calculations such as row-level and aggregate-level calculations. Create engaging and efficient dashboards for professional data presentations. Integrate R functionalities with Tableau for predictive and advanced analytics. Design and implement custom geographic visualizations, including polygon maps. Optimize performance and best practices in Tableau for innovative BI solutions. Author(s) Jen Stirrup and None Baldwin are experienced data analysts and Tableau experts with years of practical experience in consulting and teaching. Jen has contributed significantly to the Tableau community through workshops and talks. Together, they provide structured guidance that helps readers master Tableau while emphasizing hands-on learning. Who is it for? This book is for business analysts aiming to enhance their data visualization skills using Tableau. Whether you are an intermediate Tableau user looking to tackle advanced techniques or someone wanting to streamline your BI workflows, this book focuses on practical problem-solving. It equips you to use Tableau effectively to create impactful visualizations and insights.

Style and Statistics

A non-technical guide to leveraging retail analytics for personal and competitive advantage Style & Statistics is a real-world guide to analytics in retail. Written specifically for the non-IT crowd, this book explains analytics in an approachable, understandable way, and provides examples of direct application to retail merchandise management, marketing, and operations. The discussion covers current industry trends and emerging-standard processes, and illustrates how analytics is providing new solutions to perennial retail problems. You'll learn how to leverage the benefits of analytics to boost your personal career, and how to interpret data in a way that's useful to the average end business user or shopper. Key concepts are detailed in easy-to-understand language, and numerous examples highlight the growing importance of understanding analytics in the retail environment. The power of analytics has become apparent across industries, but it's left an especially indelible mark on retail. It's a complex topic, but you don't need to be a data scientist to take advantage of the opportunities it brings. This book shows you what you need to know, and how to put analytics to work with retail-specific applications. Learn how analytics can help you be better at your job Dig deeper into the customer's needs, wants, and dreams Streamline merchandise management, pricing, marketing, and more Find solutions for inefficiencies and inaccuracies As the retail customer evolves, so must the retail industry. The retail landscape not only includes in-store but also website, mobile site, mobile apps, and social media . With more and more competition emerging on all sides, retailers need to use every tool at their disposal to create value and gain a competitive advantage. Analytics offers a number of ways to make your company stand out, whether it's through improved operations, customer experience, or any of the other myriad factors that build a great place to shop. Style & Statistics provides an analytics primer with a practical bent, specifically for the retail industry.

Tableau 10 Business Intelligence Cookbook

Tableau 10 Business Intelligence Cookbook is your comprehensive guide to mastering data analysis and visualization using Tableau 10. You will gain confidence in creating powerful, interactive dashboards and visualizations that not only look great but also help convey critical insights effectively. What this Book will help me do Create and customize effective charts including bar charts, line graphs, and scatter plots. Build interactive dashboards that combine visualizations into cohesive data presentations. Leverage Tableau's calculated fields and parameters to implement advanced data transformations. Prepare and clean your data for analysis using built-in Tableau tools to ensure accuracy. Utilize geospatial and mapping features to visualize geographic and location-based data effectively. Author(s) Donabel Santos is an experienced data specialist and Tableau expert with a passion for teaching data visualization techniques. Paul Banoub, a seasoned business intelligence professional, brings practical insights into crafting effective data strategies using Tableau. Together, they create a book that empowers professionals to realize their data visualization goals. Who is it for? This book is ideal for business professionals, data analysts, and technology experts looking to enhance their Tableau skills. Beginners will find the recipes approachable thanks to the step-by-step guidance, while more advanced users will appreciate the depth of techniques covered. Whether you analyze data for business intelligence or strategic planning, this book will provide tools to expand your capabilities.

Implementing CDISC Using SAS

For decades researchers and programmers have used SAS to analyze, summarize, and report clinical trial data. Now Chris Holland and Jack Shostak have updated their popular Implementing CDISC Using SAS, the first comprehensive book on applying clinical research data and metadata to the Clinical Data Interchange Standards Consortium (CDISC) standards.

Implementing CDISC Using SAS: An End-to-End Guide, Second Edition, is an all-inclusive guide on how to implement and analyze the Study Data Tabulation Model (SDTM) and the Analysis Data Model (ADaM) data and prepare clinical trial data for regulatory submission. Updated to reflect the 2017 FDA mandate for adherence to CDISC standards, this new edition covers creating and using metadata, developing conversion specifications, implementing and validating SDTM and ADaM data, determining solutions for legacy data conversions, and preparing data for regulatory submission. The book covers products such as Base SAS, SAS Clinical Data Integration, and the SAS Clinical Standards Toolkit, as well as JMP Clinical. Topics included in this new edition include an implementation of the Define-XML 2.0 standard, new SDTM domains, validation with Pinnacle 21 software, event narratives in JMP Clinical, and of course new versions of SAS and JMP software.

Any manager or user of clinical trial data in this day and age is likely to benefit from knowing how to either put data into a CDISC standard or analyzing and finding data once it is in a CDISC format. If you are one such person--a data manager, clinical and/or statistical programmer, biostatistician, or even a clinician--then this book is for you.

Visualizing Graph Data

Visualizing Graph Data teaches you not only how to build graph data structures, but also how to create your own dynamic and interactive visualizations using a variety of tools. This book is loaded with fascinating examples and case studies to show you the real-world value of graph visualizations. About the Technology Assume you are doing a great job collecting data about your customers and products. Are you able to turn your rich data into important insight? Complex relationships in large data sets can be difficult to recognize. Visualizing these connections as graphs makes it possible to see the patterns, so you can find meaning in an otherwise over-whelming sea of facts. About the Book Visualizing Graph Data teaches you how to understand graph data, build graph data structures, and create meaningful visualizations. This engaging book gently introduces graph data visualization through fascinating examples and compelling case studies. You'll discover simple, but effective, techniques to model your data, handle big data, and depict temporal and spatial data. By the end, you'll have a conceptual foundation as well as the practical skills to explore your own data with confidence. What's Inside Techniques for creating effective visualizations Examples using the Gephi and KeyLines visualization packages Real-world case studies About the Reader No prior experience with graph data is required. About the Author Corey Lanum has decades of experience building visualization and analysis applications for companies and government agencies around the globe. Quotes Shows you how to solve visualization problems and explore complex data sets. A pragmatic introduction. - John D. Lewis, DDN Excellent! Hands-on! Shows you how to kick-start your graph data visualization. - Rocio Chongtay, University of Southern Denmark A clear and concise guide to both graph theory and visualization. - Jonathan Suever, PhD, Georgia Institute of Technology Great coverage, with real-life business use cases. - Sumit Pal, Big Data consultant

R Data Structures and Algorithms

"R Data Structures and Algorithms" serves as a comprehensive guide to understanding data structures and algorithms for R developers. You will explore key data structures like stacks, queues, and trees, learn sorting and searching techniques, and apply these concepts to enhance the speed and efficiency of your R programs. What this Book will help me do Analyze algorithm efficiency using Big-O notation. Implement key data structures such as arrays, linked lists, and trees in R. Explore advanced techniques like dynamic programming and graph algorithms. Master sorting and searching algorithms for optimizing data processes. Utilize R-specific structures like vectors and data frames effectively. Author(s) The authors, PKS Prakash and Sri Krishna Rao, bring extensive experience in software development and data analysis, and a passion for making computer science concepts accessible. Their combined expertise ensures readers gain practical knowledge along with a deep theoretical understanding. Who is it for? This book is perfect for R developers aiming to deepen their understanding of data structures and algorithms. Whether you're a beginner with basic R proficiency or an advanced user seeking to boost application performance, this book provides the knowledge you need to succeed.

Advanced R: Data Programming and the Cloud

Program for data analysis using R and learn practical skills to make your work more efficient. This book covers how to automate running code and the creation of reports to share your results, as well as writing functions and packages. Advanced R is not designed to teach advanced R programming nor to teach the theory behind statistical procedures. Rather, it is designed to be a practical guide moving beyond merely using R to programming in R to automate tasks. This book will show you how to manipulate data in modern R structures and includes connecting R to data bases such as SQLite, PostgeSQL, and MongoDB. The book closes with a hands-on section to get R running in the cloud. Each chapter also includes a detailed bibliography with references to research articles and other resources that cover relevant conceptual and theoretical topics. What You Will Learn Write and document R functions Make an R package and share it via GitHub or privately Add tests to R code to insure it works as intended Build packages automatically with GitHub Use R to talk directly to databases and do complex data management Run R in the Amazon cloud Generate presentation-ready tables and reports using R Who This Book Is For Working professionals, researchers, or students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to take their R coding and programming to the next level.

How to design with data

Data is a key part of analyzing your designs and the way your users use your designs. Analytics can seem intimidating if you are not familiar with them, but the basics are pretty simple once you know what the numbers and graphs mean. What you’ll learn&8212;and how you can apply it You will learn basic tips about how to interpret a graph of user behavior to find the problems in your designs (so you can fix them!), and what the fundamental numbers mean. You will also start to have an intuition about how to compare those numbers to understand the “health” of your site/app and see insights that no one else can see. This lesson is for you because You can start using the information from these lessons today, and you will feel more comfortable learning more about user data and analytics after reading them. Prerequisites: No experience with data is necessary General familiarity with the idea of designing digital things is helpful Materials or downloads needed: None This Lesson in taken from by Joel Marsh. UX for Beginners

R for Microsoft® Excel Users: Making the Transition for Statistical Analysis

Microsoft Excel can perform many statistical analyses, but thousands of business users and analysts are now reaching its limits. R, in contrast, can perform virtually any imaginable analysis—if you can get over its learning curve. In R for Microsoft® Excel Users, Conrad Carlberg shows exactly how to get the most from both programs. Drawing on his immense experience helping organizations apply statistical methods, Carlberg reviews how to perform key tasks in Excel, and then guides you through reaching the same outcome in R—including which packages to install and how to access them. Carlberg offers expert advice on when and how to use Excel, when and how to use R instead, and the strengths and weaknesses of each tool. Writing in clear, understandable English, Carlberg combines essential statistical theory with hands-on examples reflecting real-world challenges. By the time you’ve finished, you’ll be comfortable using R to solve a wide spectrum of problems—including many you just couldn’t handle with Excel. • Smoothly transition to R and its radically different user interface • Leverage the R community’s immense library of packages • Efficiently move data between Excel and R • Use R’s DescTools for descriptive statistics, including bivariate analyses • Perform regression analysis and statistical inference in R and Excel • Analyze variance and covariance, including single-factor and factorial ANOVA • Use R’s mlogit package and glm function for Solver-style logistic regression • Analyze time series and principal components with R and Excel

Forecasting Fundamentals

This book is for everyone who wants to make better forecasts. It is not about mathematics and statistics. It is about following a well-established forecasting process to create and implement good forecasts. This is true whether you are forecasting global markets, sales of SKUs, competitive strategy, or market disruptions. Today, most forecasts are generated using software. However, no amount of technology and statistics can compensate for a poor forecasting process. Forecasting is not just about generating a number. Forecasters need to understand the problems they are trying to solve. They also need to follow a process that is justifiable to other parties and be implemented in practice. This is what the book is about. Accurate forecasts are essential for predicting demand, identifying new market opportunities, forecasting risks, disruptions, innovation, competition, market growth and trends. Companies can navigate this daunting landscape and improve their forecasts by following some well-established principles. This book is written to provide the fundamentals business leaders need in order to make good forecasts. These fundamentals hold true regardless of what is being forecast and what technology is being used. It provides the basic foundational principles all companies need to achieve competitive forecast accuracy.

Pro Power BI Desktop

This book shows how to deliver eye-catching Business Intelligence with Microsoft Power BI Desktop. You can now take data from virtually any source and use it to produce stunning dashboards and compelling reports that will seize your audience's attention. Slice and dice the data with remarkable ease then add metrics and KPIs to project the insights that create your competitive advantage. Make raw data into clear, accurate, and interactive information with Microsoft's free self-service business intelligence tool. will help you to push your BI delivery to the next level. You'll learn to create great-looking visualizations and let your audience have fun by interacting with the elegant and visually arresting output that you can now deliver. You can choose from a wide range of built-in and third-party visualization types so that your message is always enhanced. You'll be able to deliver those results on the PC, on tablets, on smartphones, as well as share results via the cloud. Finally, this book helps you save time by preparing the underlying data correctly without needing an IT department to prepare it for you. Power BI Desktop will let your analyses speak for themselves. Pro Power BI Desktop Simple techniques to make data into insight. Polished interactive dashboards to deliver attention-grabbing information. Visually arresting output on multiple devices grab the reader's attention. What You Will Learn Produce designer output to astound your bosses and peers. Share business intelligence in the cloud Deliver visually stunning charts, maps, and tables. Make them interactive too! Find new insights as you chop and tweak your data as never before. Adapt delivery to mobile devices such as phones and tablets. Audience is written for any user who is comfortable in Microsoft Office. Everyone from CEOs and Business Intelligence developers through to power users and IT managers can use this book to outshine the competition by producing 21st Century business intelligence visualizations and reporting on a variety of devices from a variety of data sources. All of this is possible through leveraging your existing skill set with the same, common Microsoft tools you already use in your daily work. Pro Power BI Desktop

Business Analytics for Managers, 2nd Edition

The intensified used of data based on analytical models to control digitalized operational business processes in an intelligent way is a game changer that continuously disrupts more and more markets. This book exemplifies this development and shows the latest tools and advances in this field Business Analytics for Managers offers real-world guidance for organizations looking to leverage their data into a competitive advantage. This new second edition covers the advances that have revolutionized the field since the first edition's release; big data and real-time digitalized decision making have become major components of any analytics strategy, and new technologies are allowing businesses to gain even more insight from the ever-increasing influx of data. New terms, theories, and technologies are explained and discussed in terms of practical benefit, and the emphasis on forward thinking over historical data describes how analytics can drive better business planning. Coverage includes data warehousing, big data, social media, security, cloud technologies, and future trends, with expert insight on the practical aspects of the current state of the field. Analytics helps businesses move forward. Extensive use of statistical and quantitative analysis alongside explanatory and predictive modeling facilitates fact-based decision making, and evolving technologies continue to streamline every step of the process. This book provides an essential update, and describes how today's tools make business analytics more valuable than ever. Learn how Hadoop can upgrade your data processing and storage Discover the many uses for social media data in analysis and communication Get up to speed on the latest in cloud technologies, data security, and more Prepare for emerging technologies and the future of business analytics Most businesses are caught in a massive, non-stop stream of data. It can become one of your most valuable assets, or a never-ending flood of missed opportunity. Technology moves fast, and keeping up with the cutting edge is crucial for wringing even more value from your data— Business Analytics for Managers brings you up to date, and shows you what analytics can do for you now.

Predictive Analytics For Dummies, 2nd Edition

Real-world tips for creating business value Details on modeling, data clustering, and more Enterprise use cases to help you get started Learn to predict the future! Business today relies on effectively using data to predict trends and sales. Predictive analytics is the tool that can make it happen, and this book eliminates the tricks and shows you how to use it. You'll learn to prepare and process your data, create goals, build a predictive model, get your organization's stakeholders on board, and more. Inside... How to start a project Identifying data types Modeling tips Working with algorithms How data clustering works How data classification works How deep learning works Advice on presentations Step-by-step predictive modeling

Learning R Programming

This book provides a comprehensive introduction to R programming, a powerful tool for data science and statistics. Throughout the book, readers will explore programming constructs, data structures, and popular R packages, gaining the skills needed for practical applications and problem-solving. What this Book will help me do Understand R's foundational concepts like variables, data types, and functions. Learn how to use R for data analysis, visualization, and machine learning tasks. Develop advanced R skills such as meta-programming and performance optimization. Master object-oriented programming using R's S3, S4, and R6 systems. Gain confidence in utilizing R for creating web scraping scripts and interactive reports. Author(s) None Ren, an experienced software developer and educator, specializes in languages for data analysis, including R. With years of practical experience and teaching R programming, they bring clarity and depth to complex topics. Their approachable writing style ensures learners at any level can engage effectively. Who is it for? This book is ideal for professionals in data science, statistics, and related fields with basic programming skills looking to delve into R programming. It caters to beginners and those consolidating their knowledge of R, aiming to develop practical skills for data manipulation and analysis.

A Practical Guide to Graphics Reporting, 2nd Edition

Since this book first published in 2006, the field of information visualization has drastically. First, information visualization has exploded online and on other digital platforms. Second, information graphics reporting has encompassed nearly every sector of communications and business. This edition seeks to address these changes by providing learners with a cross-platform, cross-industry approach to instruction. It will include a robust, dynamic website complete with regularly updated examples of print, online and broadcast graphics, as well as useful tutorials and exercises.

Delayed and Network Queues

Presents an introduction to differential equations, probability, and stochastic processes with real-world applications of queues with delay and delayed network queues Featuring recent advances in queueing theory and modeling, Delayed and Network Queues provides the most up-to-date theories in queueing model applications. Balancing both theoretical and practical applications of queueing theory, the book introduces queueing network models as tools to assist in the answering of questions on cost and performance that arise throughout the life of a computer system and signal processing. Written by well-known researchers in the field, the book presents key information for understanding the essential aspects of queues with delay and networks of queues with unreliable nodes and vacationing servers. Beginning with simple analytical fundamentals, the book contains a selection of realistic and advanced queueing models that address current deficiencies. In addition, the book presents the treatment of queues with delay and networks of queues, including possible breakdowns and disruptions that may cause delay. Delayed and Network Queues also features: Numerous examples and exercises with applications in various fields of study such as mathematical sciences, biomathematics, engineering, physics, business, health industry, and economics A wide array of practical applications of network queues and queueing systems, all of which are related to the appropriate stochastic processes Up-to-date topical coverage such as single- and multiserver queues with and without delays, along with the necessary fundamental coverage of probability and difference equations Discussions on queueing models such as single- and multiserver Markovian queues with balking, reneging, delay, feedback, splitting, and blocking, as well as their role in the treatment of networks of queues with and without delay and network reliability Delayed and Network Queues is an excellent textbook for upper-undergraduate and graduate-level courses in applied mathematics, queueing theory, queueing systems, probability, and stochastic processes. The book is also an ideal reference for academics and practitioners in mathematical sciences, biomathematics, operations research, management, engineering, physics, business, economics, health industry, and industrial engineering. Aliakbar Montazer Haghighi, PhD, is Professor and Head of the Department of Mathematics at Prairie View A&M University, USA, as well as founding Editor-in-Chief of Applications and Applied Mathematics: An International Journal (AAM). His research interests include probability, statistics, stochastic processes, and queueing theory. Among his research publications and books, Dr. Haghighi is the coauthor of Difference and Differential Equations with Applications in Queueing Theory (Wiley, 2013). Dimitar P. Mishev, PhD, is Professor in the Department of Mathematics at Prairie View A&M University, USA. His research interests include differential and difference equations and queueing theory. The author of numerous research papers and three books, Dr. Mishev is the coauthor of Difference and Differential Equations with Applications in Queueing Theory (Wiley, 2013).

Data Visualization: Representing Information on Modern Web

Unleash the power of data by creating interactive, engaging, and compelling visualizations for the web About This Book Get a portable, versatile, and flexible data visualization design approach that will help you navigate the complex path towards success Get thorough explanation of the many visual variables and visualization taxonomy to provide you with a menu of creative options A comprehensive and contemporary introduction to data-driven visualization design and the most effective approaches to designing impact-maximizing and cognition-amplifying visualizations Who This Book Is For This course is for developers who are excited about data and who want to share that excitement with others and it will be handy for the web developers or data scientists who want to create interactive visualizations for the web. Prior knowledge of developing web applications is required. You should have a working knowledge of both JavaScript and HTML. What You Will Learn Harness the power of D3 by building interactive and real-time data-driven web visualizations Find out how to use JavaScript to create compelling visualizations of social data Identify the purpose of your visualization and your project's parameters to determine overriding design considerations across your project's execution Apply critical thinking to visualization design and get intimate with your dataset to identify its potential visual characteristics Explore the various features of HTML5 to design creative visualizations Discover what data is available on Stack Overflow, Facebook, Twitter, and Google+ Gain a solid understanding of the common D3 development idioms Find out how to write basic D3 code for server using Node.js In Detail Do you want to create more attractive charts? Or do you have huge data sets and need to unearth the key insights in a visual manner? Data visualization is the representation and presentation of data, using proven design techniques to bring alive the patterns, stories, and key insights that are locked away. This learning path is divided into three modules. The first module will equip you with the key techniques required to overcome contemporary data visualization challenges. After getting familiar with key concepts of data visualization, it's time to incorporate it with various technologies. In the second module, Social Data Visualization with HTML5 and JavaScript, it teaches you how to leverage HTML5 techniques through JavaScript to build visualizations. It also clears up how the often complicated OAuth protocol works to help you unlock a universe of social media data from sites such as Twitter, Facebook, and Google+. Once you are familiar with the concepts of incorporating data visualization with HTML5 and JavaScript, third module, Learning d3.js Data Visualization, will lead you to D3, which has emerged as one of the leading platforms to develop beautiful, interactive visualizations over the web. This module provides a strong foundation in designing compelling web visualizations with D3.js. By the end of this course, you will have unlocked the mystery behind successful data visualizations. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Data Visualization: a successful design process by Andy Kirk Social Data Visualization with HTML5 and JavaScript by Simon Timms Learning d3.js Data Visualization, Second Edition by Ændrew Rininsland and Swizec Teller Style and approach This course includes all the resources that will help you jump into creating interactive and engaging visualizations for the web. Through this comprehensive course, you’ll learn how to create engaging visualizations for the web to represent your data from start to finish! Downloading the example code for this book. You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the code file.