talk-data.com talk-data.com

Topic

Data Quality

data_management data_cleansing data_validation

537

tagged

Activity Trend

82 peak/qtr
2020-Q1 2026-Q1

Activities

537 activities · Newest first

Summary The data mesh is a thesis that was presented to address the technical and organizational challenges that businesses face in managing their analytical workflows at scale. Zhamak Dehghani introduced the concepts behind this architectural patterns in 2019, and since then it has been gaining popularity with many companies adopting some version of it in their systems. In this episode Zhamak re-joins the show to discuss the real world benefits that have been seen, the lessons that she has learned while working with her clients and the community, and her vision for the future of the data mesh.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m welcoming back Zhamak Dehghani to talk about her work on the data mesh book and the lessons learned over the past 2 years

Interview

Introduction How did you get involved in the area of data management? Can you start by giving a brief recap of the principles of the data mesh and the story behind it? How has your view of the principles of the data mesh changed since our conversation in July of 2019? What are some of the ways that your work on the data mesh book influenced your thinking on the practical elements of implementing a data mesh? What do you view as the as-yet-unknown elements of the technical and social design constructs that are needed for a sustainable data mesh implementation? In the opening of your book you state that "Data Mesh is a new approach in sourcing, managing, and accessing data for analytical use cases at scale". As with everything, scale is subjective, but what are some of the heuristics that you rely on for determining when a data mesh is an appropriate solution? What are some of the ways that data mesh concepts manifest at the boundaries of organizations? While the idea of federated access to data product quanta reduces the amount of coordination necessary at the organizational level, it raises the spectre of more complex logic required for consumers of multiple quanta. How can data mesh implementations mitigate the impact of this problem? What are some of the technical components that you have found to be best suited to the implementation of data elements within a mesh? What are the technological components that are still missing for a mesh-native data platform? How should an organization that wishes to implement a mesh style architecture think about the roles and skills that they will need on staff?

How can vendors factor into the solution?

What is the role of application developers in a data mesh ecosystem and how do they need to change their thinking around the interfaces that they provide in their products? What are the most interesting, innovative, or unexpected ways that you have seen data mesh principles used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on data mesh implementations? When is a data mesh the wrong approach? What do you think the future of the data mesh will look like?

Contact Info

LinkedIn @zhamakd on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Data Engineering Podcast Data Mesh Interview Data Mesh Book Thoughtworks Expert Systems OpenLineage

Podcast Episode

Data Mesh Learning

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Data Mesh in Practice

The data mesh is poised to replace data lakes and data warehouses as the dominant architectural pattern in data and analytics. By promoting the concept of domain-focused data products that go beyond file sharing, data mesh helps you deal with data quality at scale by establishing true data ownership. This approach is so new, however, that many misconceptions and a general lack of practical experience for implementing data mesh are widespread. With this report, you'll learn how to successfully overcome challenges in the adoption process. By drawing on their experience building large-scale data infrastructure, designing data architectures, and contributing to data strategies of large and successful corporations, authors Max Schultze and Arif Wider have identified the most common pain points along the data mesh journey. You'll examine the foundations of the data mesh paradigm and gain both technical and organizational insights. This report is ideal for companies just starting to work with data, for organizations already in the process of transforming their data infrastructure landscape, as well as for advanced companies working on federated governance setups for a sustainable data-driven future. This report covers: Data mesh principles and practical examples for getting started Typical challenges and solutions you'll encounter when implementing a data mesh Data mesh pillars including domain ownership, data as a product, and infrastructure as a platform How to move toward a decentralized data product and build a data infrastructure platform

Summary One of the perennial challenges of data analytics is having a consistent set of definitions, along with a flexible and performant API endpoint for querying them. In this episode Artom Keydunov and Pavel Tiunov share their work on Cube.js and the various ways that it is being used in the open source community.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Artyom Keydunov and Pavel Tiunov about Cube.js a framework for building analytics APIs to power your applications and BI dashboards

Interview

Introduction How did you get involved in the area of data management? Can you describe what Cube is and the story behind it? What are the main use cases and platform architectures that you are focused on?

Who are the target personas that will be using and managing Cube.js?

The name comes from the concept of an OLAP cube. Can you discuss the applications of OLAP cubes and their role in the current state of the data ecosystem?

How does the idea of an OLAP cube compare to the recent focus on a dedicated metrics layer?

What are the pieces of a data platform that might be replaced by Cube.js? Can you describe the design and architecture of the Cube platform?

How has the focus and target use case for the Cube platform evolved since you first started working on it?

One of the perpetually hard problems in computer science is cache management. How have you approached that challenge in the pre-aggregation layer of the Cube framework? What is your overarching design philosophy for the API of the Cube system? Can you talk through the workflow of someone building a cube and querying it from a downstream system?

What do the iteration cycles look like as you go from initial proof of concept to a more sophisticated usage of Cube.js

Summary Spark is a powerful and battle tested framework for building highly scalable data pipelines. Because of its proven ability to handle large volumes of data Capital One has invested in it for their business needs. In this episode Gokul Prabagaren shares his use for it in calculating your rewards points, including the auditing requirements and how he designed his pipeline to maintain all of the necessary information through a pattern of data enrichment.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Gokul Prabagaren about how he is using Spark for real-world workflows at Capital One

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of the types of data and workflows that you are responsible for at Capital one?

In terms of the three "V"s (Volume, Variety, Velocity), what is the magnitude of the data that you are working with?

What are some of the business and regulatory requirements that have to be factored into the solutions that you design? Who are the consumers of the data assets that you are producing? Can you describe the technical elements of the platform that you use for managing your data pipelines? What are the various ways that you are using Spark at Capital One? You wrote a post and presented at the Databricks conference about your experience moving from a data filtering to a data enrichment pattern for segmenting transactions. Can you give some context as to the use case and what your design process was for the initial implementation?

What were the shortcomings to that approach/business requirements which led you to refactoring the approach to one that maintained all of the data through the different processing stages?

What are some of t

Summary A/B testing and experimentation are the most reliable way to determine whether a change to your product will have the desired effect on your business. Unfortunately, being able to design, deploy, and validate experiments is a complex process that requires a mix of technical capacity and organizational involvement which is hard to come by. Chetan Sharma founded Eppo to provide a system that organizations of every scale can use to reduce the burden of managing experiments so that you can focus on improving your business. In this episode he digs into the technical, statistical, and design requirements for running effective experiments and how he has architected the Eppo platform to make the process more accessible to business and data professionals.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Chetan Sharma about Eppo, a platform for building A/B experiments that are easier to manage

Interview

Introduction How did you get involved in the area of data management? Can you describe what Eppo is and the story behind it? What are some examples of the kinds of experiments that teams and organizations might want to conduct? What are the points of friction that What are the steps involved in designing, deploying, and analyzing the outcomes of an A/B experiment?

What are some of the statistical errors that are common when conducting an experiment?

What are the design and UX principles that you have focused on in Eppo to improve the workflow of building and analyzing experiments? Can you describe the system design of the Eppo platform?

What are the services or capabilities external to Eppo that are required for it to be effective? What are the integration points for adding Eppo to an organization’s existing platform?

B

Summary The modern data stack has been gaining a lot of attention recently with a rapidly growing set of managed services for different stages of the data lifecycle. With all of the available options it is possible to run a scalable, production grade data platform with a small team, but there are still sharp edges and integration challenges to work through. Peter Fishman and Dan Silberman experienced these difficulties firsthand and created Mozart Data to provide a single, easy to use option for getting started with the modern data stack. In this episode they explain how they designed a user experience to make working with data more accessibly by organizations without a data team, while allowing for more advanced users to build out more complex workflows. They also share their thoughts on the modern data ecosystem and how it improves the availability of analytics for companies of all sizes.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Peter Fishman and Dan Silberman about Mozart Data and how they are building a unified experience for the modern data stack

Interview

Introduction How did you get involved in the area of data management? Can you describe what Mozart Data is and the story behind it? The promise of the "modern data stack" is that it’s all delivered as a service to make it easier to set up. What are the missing pieces that make something like Mozart necessary? What are the main workflows or industries that you are focusing on? Who are the main personas that you are building Mozart for?

How has that combination of user persona and industry focus informed your decisions around feature priorities and user experience?

Can you describe how you have architected the Mozart platform?

How have you approached the bu

Summary One of the perennial challenges posed by data lakes is how to keep them up to date as new data is collected. With the improvements in streaming engines it is now possible to perform all of your data integration in near real time, but it can be challenging to understand the proper processing patterns to make that performant. In this episode Ori Rafael shares his experiences from Upsolver and building scalable stream processing for integrating and analyzing data, and what the tradeoffs are when coming from a batch oriented mindset.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Ori Rafael about strategies for building stream and batch processing patterns for data lake analytics

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of the state of the market for data lakes today?

What are the prevailing architectural and technological patterns that are being used to manage these systems?

Batch and streaming systems have been used in various combinations since the early days of Hadoop. The Lambda architecture has largely been abandoned, so what is the answer for today’s data lakes? What are the challenges presented by streaming approaches to data transformations?

The batch model for processing is intuitive despite its latency problems. What are the benefits that it provides?

The core concept for data orchestration is the DAG. How does that manifest in a streaming context? In batch processing idempotent/immutable datasets are created by re-running the entire pipeline when logic changes need to be made. Given that there is no definitive start or end of a stream, what are the options for amending logical errors in transformations? What are some of the da

Summary The most important gauge of success for a data platform is the level of trust in the accuracy of the information that it provides. In order to build and maintain that trust it is necessary to invest in defining, monitoring, and enforcing data quality metrics. In this episode Michael Harper advocates for proactive data quality and starting with the source, rather than being reactive and having to work backwards from when a problem is found.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Michael Harper about definitions of data quality and where to define and enforce it in the data platform

Interview

Introduction How did you get involved in the area of data management? What is your definition for the term "data quality" and what are the implied goals that it embodies?

What are some ways that different stakeholders and participants in the data lifecycle might disagree about the definitions and manifestations of data quality?

The market for "data quality tools" has been growing and gaining attention recently. How would you categorize the different approaches taken by open source and commercial options in the ecosystem?

What are the tradeoffs that you see in each approach? (e.g. data warehouse as a chokepoint vs quality checks on extract)

What are the difficulties that engineers and stakeholders encounter when identifying and defining information that is necessary to identify issues in their workflows? Can you describe some examples of adding data quality checks to the beginning stages of a data workflow and the kinds of issues that can be identified?

What are some ways that quality and observability metrics can be aggregated across multiple pipeline stages to identify more complex issues?

In application observa

Summary Business intelligence is often equated with a collection of dashboards that show various charts and graphs representing data for an organization. What is overlooked in that characterization is the level of complexity and effort that are required to collect and present that information, and the opportunities for providing those insights in other contexts. In this episode Telmo Silva explains how he co-founded ClicData to bring full featured business intelligence and reporting to every organization without having to build and maintain that capability on their own. This is a great conversation about the technical and organizational operations involved in building a comprehensive business intelligence system and the current state of the market.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Telmo Silva about ClicData,

Interview

Introduction How did you get involved in the area of data management? Can you describe what ClicData is and the story behind it? How would you characterize the current state of the market for business intelligence?

What are the systems/capabilities that are required to run a full-featured BI system?

What are the challenges that businesses face in developing in-house capacity for business intelligence? Can you describe how the ClicData platform is architected?

How has it changed or evolved since you first began working on it?

How are you approaching schema design and evolution in the storage layer? How do you handle questions of data security/privacy/regulations given that you are storing the information on behalf of the business? In your work with clients what are some of the challenges that businesses are facing when attempting to answer questions and gain insights from their data in a rep

Summary The perennial question of data warehousing is how to model the information that you are storing. This has given rise to methods as varied as star and snowflake schemas, data vault modeling, and wide tables. The challenge with many of those approaches is that they are optimized for answering known questions but brittle and cumbersome when exploring unknowns. In this episode Ahmed Elsamadisi shares his journey to find a more flexible and universal data model in the form of the "activity schema" that is powering the Narrator platform, and how it has allowed his customers to perform self-service exploration of their business domains without being blocked by schema evolution in the data warehouse. This is a fascinating exploration of what can be done when you challenge your assumptions about what is possible.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Ahmed Elsamadisi about Narrator, a platform to enable anyone to go from question to data-driven decision in minutes

Interview

Introduction How did you get involved in the area of data management? Can you describe what Narrator is and the story behind it? What are the challenges that you have seen organizations encounter when attempting to make analytics a self-serve capability? What are the use cases that you are focused on? How does Narrator fit within the data workflows of an organization? How is the Narrator platform implemented?

How has the design and focus of the technology evolved since you first started working on Narrator?

The core element of the analyses that you are building is the "activity schema". Can you describe the design process that led you to that format?

What are the challenges that are posed by more widely used modeling techniques such as star/s

Summary The market for business intelligence has been going through an evolutionary shift in recent years. One of the driving forces for that change has been the rise of analytics engineering powered by dbt. Lightdash has fully embraced that shift by building an entire open source business intelligence framework that is powered by dbt models. In this episode Oliver Laslett describes why dashboards aren’t sufficient for business analytics, how Lightdash promotes the work that you are already doing in your data warehouse modeling with dbt, and how they are focusing on bridging the divide between data teams and business teams and the requirements that they have for data workflows.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Oliver Laslett about Lightdash, an open source business intelligence system powered by your dbt models

Interview

Introduction How did you get involved in the area of data management? Can you describe what Lightdash is and the story behind it?

What are the main goals of the project? Who are the target users, and how has that profile informed your feature priorities?

Business intelligence is a market that has gone through several generational shifts, with products targeting numerous personas and purposes. What are the capabilities that make Lightdash stand out from the other options? Can you describe how Lightdash is architected?

How have the design and goals of the system changed or evolved since you first began working on it? What have been the most challenging engineering problems that you have dealt with?

How does the approach that you are taking with Lightdash compare to systems such as Transform and Metriql that aim to provide a dedicated metrics layer? Can you describe the workflow for som

Summary The focus of the past few years has been to consolidate all of the organization’s data into a cloud data warehouse. As a result there have been a number of trends in data that take advantage of the warehouse as a single focal point. Among those trends is the advent of operational analytics, which completes the cycle of data from collection, through analysis, to driving further action. In this episode Boris Jabes, CEO of Census, explains how the work of synchronizing cleaned and consolidated data about your customers back into the systems that you use to interact with those customers allows for a powerful feedback loop that has been missing in data systems until now. He also discusses how Census makes that synchronization easy to manage, how it fits with the growth of data quality tooling, and how you can start using it today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/impact today to save your spot at IMPACT: The Data Observability Summit a half-day virtual event featuring the first U.S. Chief Data Scientist, founder of the Data Mesh, Creator of Apache Airflow, and more data pioneers spearheading some of the biggest movements in data. The first 50 to RSVP with this link will be entered to win an Oculus Quest 2 — Advanced All-In-One Virtual Reality Headset. RSVP today – you don’t want to miss it! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Boris Jabes about Census and the growing category of operational analytics

Interview

Introduction How did you get involved in the area of data management? Can you describe what Census is and the story behind it? The terms "reverse ETL" and "operational analytics" have started being used for similar, and often interchangeable, purposes. What are your thoughts on the semantic and concrete differences between these phrases? What are the motivating factors for adding operational analytics or "data activation" to a

Send us a text Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.

Abstract Hosted by Al Martin, VP, IBM Expert Services Delivery, Making Data Simple provides the latest thinking on big data, A.I., and the implications for the enterprise from a range of experts. This week on Making Data Simple, we have Jean-Claude Mamou. Jean-Claude is the Chief Architect of Information Integration and Governance portfolio, this includes such products as Watson Knowledge Catalog and Datastage.   Show Notes 1:45 – Jean-Claude’s experience 5:15 – What are the industry challenges? 6:52 – Is there integration without governance? 9:49 – What is the new solution? 13:12 – Understanding your critical data 16:06 – Explain what IBM Satellite means 19:53 – Where does Cloud Pak for Data come into play? 24:57 – What technology can we use to avoid repetitive mistakes? 30:36 – Understanding critical data 33:52 – What is the number 1 data quality issue? 37:08 - How are you inspired and how do you figure your next innovation?  38:52 – Do you have a process you follow? Jean-Claude Mamou – LinkedIn Connect with the Team Producer Kate Brown - LinkedIn. Producer Steve Templeton - LinkedIn. Host Al Martin - LinkedIn and Twitter.  Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Summary The binding element of all data work is the metadata graph that is generated by all of the workflows that produce the assets used by teams across the organization. The DataHub project was created as a way to bring order to the scale of LinkedIn’s data needs. It was also designed to be able to work for small scale systems that are just starting to develop in complexity. In order to support the project and make it even easier to use for organizations of every size Shirshanka Das and Swaroop Jagadish founded Acryl Data. In this episode they discuss the recent work that has been done by the community, how their work is building on top of that foundation, and how you can get started with DataHub for your own work to manage data discovery today. They also share their ambitions for the near future of adding data observability and data quality management features.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Your host is Tobias Macey and today I’m interviewing Shirshanka Das and Swaroop Jagadish about Acryl Data, the company driving the open source metadata project DataHub for powering data discovery, data observability and federated data governance.

Interview

Introduction How did you get involved in the area of data management? Can you describe what Acryl Data is and the story behind it? How has your experience of building and running DataHub at LinkedIn informed your product direction for Acryl?

What are some lessons that your co-founder Swaroop has contributed from his experience at AirBnB?

The data catalog/discovery/quality market has become very active over the past year. What is your perspective on the market, and what are the gaps that are not yet bei

Summary The key to making data valuable to business users is the ability to calculate meaningful metrics and explore them along useful dimensions. Business intelligence tools have provided this capability for years, but they don’t offer a means of exposing those metrics to other systems. Metriql is an open source project that provides a headless BI system where you can define your metrics and share them with all of your other processes. In this episode Burak Kabakcı shares the story behind the project, how you can use it to create your metrics definitions, and the benefits of treating the semantic layer as a dedicated component of your platform.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. Your host is Tobias Macey and today I’m interviewing Burak Emre Kabakcı about Metriql, a headless BI and metrics layer for your data stack

Interview

Introduction How did you get involved in the area of data management? Can you describe what Metriql is and the story behind it? What are the characteristics and benefits of a "headless BI" system? What was your motivation to create and open-source Metriql as an independent project outside of your business?

How are you approaching governance and sustainability of the project?

How does Metriql compare to projects such as AirBnB’s Minerva or Transform’s platform? How does the industry/vertical of a business impact their ability to benefit from a metrics layer/headless BI?

What are the limitations to the logical complexity that can be applied to the calculation of a given metric/set of metrics?

Can you describe how Metriql is implemented?

How have the design and goals of the project changed or evolved since you began worki

Summary Aerospike is a database engine that is designed to provide millisecond response times for queries across terabytes or petabytes. In this episode Chief Strategy Officer, Lenley Hensarling, explains how the ability to process these large volumes of information in real-time allows businesses to unlock entirely new capabilities. He also discusses the technical implementation that allows for such extreme performance and how the data model contributes to the scalability of the system. If you need to deal with massive data, at high velocities, in milliseconds, then Aerospike is definitely worth learning about.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days or even weeks. By the time errors have made their way into production, it’s often too late and damage is done. Datafold’s proactive approach to data quality helps data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Visit dataengineeringpodcast.com/datafold today to book a demo with Datafold. Your host is Tobias Macey and today I’m interviewing Lenley Hensarling about Aerospike and building real-time data platforms

Interview

Introduction How did you get involved in the area of data management? Can you describe what Aerospike is and the story behind it?

What are the use cases that it is uniquely well suited for? What are the use cases that you and the Aerospike team are focusing on and how does that influence your focus on priorities of feature development and user experience?

What are the driving factors for building a real-time data platform? How is Aerospike being incorporated in application and data architectures? Can you describe how the Aerospike engine is architected?

How have the design and architecture changed or evolved since it was first created? How have market forces influenced the product priorities and focus?

What are the challenges that end users face when determining how to model their data given a key/value storage interface?

What are the abstrac

Summary The accuracy and availability of data has become critically important to the day-to-day operation of businesses. Similar to the practice of site reliability engineering as a means of ensuring consistent uptime of web services, there has been a new trend of building data reliability engineering practices in companies that rely heavily on their data. In this episode Egor Gryaznov explains how this practice manifests from a technical and organizational perspective and how you can start adopting it in your own teams.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Your host is Tobias Macey and today I’m interviewing Egor Gryaznov, co-founder and CTO of Bigeye, about the ideas and practices of data reliability engineering and how to integrate it into your systems

Interview

Introduction How did you get involved in the area of data management? What does the term "Data Reliability Engineering" mean? What is encompassed under the umbrella of Data Reliability Engineering?

How does it compare to the concepts from site reliability engineering? Is DRE just a repackaged version of DataOps?

Why is Data Reliability Engineering particularly important now? Who is responsible for the practice of DRE in an organization? What are some areas of innovation that teams are focusing on to support a DRE practice? What are the tools that teams are using to improve the reliability of their data operations? What are the organizational systems that need to be in place to support a DRE practice?

What are some potential roadblocks that teams might have to address when planning and implementing a DRE strategy?

What are the most interesting, innovative, or unexpected approaches/solutions to DRE that you have seen? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Data Reliability Engineering? Is Data Reliability Engi

Summary Building, scaling, and maintaining the operational components of a machine learning workflow are all hard problems. Add the work of creating the model itself, and it’s not surprising that a majority of companies that could greatly benefit from machine learning have yet to either put it into production or see the value. Tristan Zajonc recognized the complexity that acts as a barrier to adoption and created the Continual platform in response. In this episode he shares his perspective on the benefits of declarative machine learning workflows as a means of accelerating adoption in businesses that don’t have the time, money, or ambition to build everything from scratch. He also discusses the technical underpinnings of what he is building and how using the data warehouse as a shared resource drastically shortens the time required to see value. This is a fascinating episode and Tristan’s work at Continual is likely to be the catalyst for a new stage in the machine learning community.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Tristan Zajonc about Continual, a platform for automating the creation and application of operational AI on top of your data warehouse

Interview

Introduction How did you get involved in the area of data management? Can you describe what Continual is and the story behind it?

What is your definition for "operational AI" and how does it differ from other applications of ML/AI?

What are some example use cases for AI in an operational capacity?

What are the barriers to adoption for organizations that want to take advantage of predictive analytics?

Who are the target users of Continual? Can you describe how the Continual platform is implemented?

How has the design and infrastructure changed or evolved since you first began working on it?

What is the workflow for

Summary The Cassandra database is one of the first open source options for globally scalable storage systems. Since its introduction in 2008 it has been powering systems at every scale. The community recently released a new major version that marks a milestone in its maturity and stability as a project and database. In this episode Ben Bromhead, CTO of Instaclustr, shares the challenges that the community has worked through, the work that went into the release, and how the stability and testing improvements are setting the stage for the future of the project.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Ben Bromhead about the recent release of Cassandra version 4 and how it fits in the current landscape of data tools

Interview

Introduction How did you get involved in the area of data management? For anyone who isn’t familiar with Cassandra, can you briefly describe what it is and some of the story behind it?

How did you get involved in the Cassandra project and how would you characterize your role?

What are the main use cases and industries where someone is likely to use Cassandra? What is notable about the version 4 release?

What were some of the factors that contributed to the long delay between versions 3 and 4? (2015 – 2021) What are your thoughts on the ongoing utility/benefits of projects such as ScyllaDB, particularly in light of the most recent release?

Cassandra is primarily used as a system of record. What are some of the tools and system architectures that users turn to when building analytical workloads for data stored in Cassandra? The architecture of Cassandra has lent itself well to the cloud native ecosystem that has been growing in recent years. What do you see as the opportunities for Cassandra over the near to medium term as the cloud continues to grow in prominence?

Summary The Presto project has become the de facto option for building scalable open source analytics in SQL for the data lake. In recent months the community has focused their efforts on making it the fastest possible option for running your analytics in the cloud. In this episode Dipti Borkar discusses the work that she and her team are doing at Ahana to simplify the work of running your own PrestoDB environment in the cloud. She explains how they are optimizin the runtime to reduce latency and increase query throughput, the ways that they are contributing back to the open source community, and the exciting improvements that are in the works to make Presto an even more powerful option for all of your analytics.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Schema changes, missing data, and volume anomalies caused by your data sources can happen without any advanced notice if you lack visibility into your data-in-motion. That leaves DataOps reactive to data quality issues and can make your consumers lose confidence in your data. By connecting to your pipeline orchestrator like Apache Airflow and centralizing your end-to-end metadata, Databand.ai lets you identify data quality issues and their root causes from a single dashboard. With Databand.ai, you’ll know whether the data moving from your sources to your warehouse will be available, accurate, and usable when it arrives. Go to dataengineeringpodcast.com/databand to sign up for a free 30-day trial of Databand.ai and take control of your data quality today. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Dipti Borkar, cofounder Ahana about Presto and Ahana, SaaS managed service for Presto

Interview

Introduction How did you get involved in the area of data management? Can you describe what Ahana is and the story behind it? There has been a lot of recent activity in the Presto community. Can you give an overview of the options that are available for someone wanting to use its SQL engine for querying their data?

What is Ahana’s role in the community/ecosystem? (happy to skip this question if it’s too contentious) What are some of the notable differences that have emerged over the past couple of years between the Trino (formerly PrestoSQL) and PrestoDB projects?

Another area that has been seeing a lot of activity is data lakes and projects to make them more manageable and feature complete (e.g. Hudi, Delta Lake, Iceberg, Nessie, LakeFS, etc.). How has that influenced your product focus and capabilities?

How does this activity change the calculus for organizations who are deciding on a lake or warehouse for their data architecture?

Can y