talk-data.com talk-data.com

Topic

KPI

Key Performance Indicator (KPI)

metrics performance_measurement business_analytics

109

tagged

Activity Trend

8 peak/qtr
2020-Q1 2026-Q1

Activities

109 activities · Newest first

Introduction to Unity Catalog Metrics: Define Your Business Metrics Once, Trust Everywhere

Today’s organizations need faster, more reliable insights — but metric sprawl and inconsistent KPIs make that difficult. In this session, you’ll learn how Unity Catalog Metrics helps unify business semantics across your organization. Define your KPIs once, apply enterprise-grade governance with fine-grained access controls, auditing and lineage, and use them across any Databricks tool — from AI/BI Dashboards and Genie to notebooks and Lakeflow. You’ll learn how to eliminate metric chaos by centrally defining and governing metrics with Unity Catalog. You’ll walk away with strategies to boost trust through built-in governance and empower every team — regardless of technical skill — to work from the same certified metrics.

Summary In this episode of the Data Engineering Podcast Alex Albu, tech lead for AI initiatives at Starburst, talks about integrating AI workloads with the lakehouse architecture. From his software engineering roots to leading data engineering efforts, Alex shares insights on enhancing Starburst's platform to support AI applications, including an AI agent for data exploration and using AI for metadata enrichment and workload optimization. He discusses the challenges of integrating AI with data systems, innovations like SQL functions for AI tasks and vector databases, and the limitations of traditional architectures in handling AI workloads. Alex also shares his vision for the future of Starburst, including support for new data formats and AI-driven data exploration tools.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th. This episode is brought to you by Coresignal, your go-to source for high-quality public web data to power best-in-class AI products. Instead of spending time collecting, cleaning, and enriching data in-house, use ready-made multi-source B2B data that can be smoothly integrated into your systems via APIs or as datasets. With over 3 billion data records from 15+ online sources, Coresignal delivers high-quality data on companies, employees, and jobs. It is powering decision-making for more than 700 companies across AI, investment, HR tech, sales tech, and market intelligence industries. A founding member of the Ethical Web Data Collection Initiative, Coresignal stands out not only for its data quality but also for its commitment to responsible data collection practices. Recognized as the top data provider by Datarade for two consecutive years, Coresignal is the go-to partner for those who need fresh, accurate, and ethically sourced B2B data at scale. Discover how Coresignal's data can enhance your AI platforms. Visit dataengineeringpodcast.com/coresignal to start your free 14-day trial.Your host is Tobias Macey and today I'm interviewing Alex Albu about how Starburst is extending the lakehouse to support AI workloadsInterview IntroductionHow did you get involved in the area of data management?Can you start by outlining the interaction points of AI with the types of data workflows that you are supporting with Starburst?What are some of the limitations of warehouse and lakehouse systems when it comes to supporting AI systems?What are the points of friction for engineers who are trying to employ LLMs in the work of maintaining a lakehouse environment?Methods such as tool use (exemplified by MCP) are a means of bolting on AI models to systems like Trino. What are some of the ways that is insufficient or cumbersome?Can you describe the technical implementation of the AI-oriented features that you have incorporated into the Starburst platform?What are the foundational architectural modifications that you had to make to enable those capabilities?For the vector storage and indexing, what modifications did you have to make to iceberg?What was your reasoning for not using a format like Lance?For teams who are using Starburst and your new AI features, what are some examples of the workflows that they can expect?What new capabilities are enabled by virtue of embedding AI features into the interface to the lakehouse?What are the most interesting, innovative, or unexpected ways that you have seen Starburst AI features used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on AI features for Starburst?When is Starburst/lakehouse the wrong choice for a given AI use case?What do you have planned for the future of AI on Starburst?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links StarburstPodcast EpisodeAWS AthenaMCP == Model Context ProtocolLLM Tool UseVector EmbeddingsRAG == Retrieval Augmented GenerationAI Engineering Podcast EpisodeStarburst Data ProductsLanceLanceDBParquetORCpgvectorStarburst IcehouseThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Sponsored by: Atlan | How Fox & Atlan are Partnering to Make Metadata a Common System of Trust, Context, and Governance

With hundreds of millions viewing broadcasts from news to sports, Fox relies on a sophisticated and trusted architecture ingesting 100+ data sources, carefully governed to improve UX across products, drive sales and marketing, and ensure KPI tracking. Join Oliver Gomes, VP of Enterprise and Data Platform at Fox, and Prukalpa Sankar of Atlan to learn how true partnership helps their team navigate opportunities from Governance to AI. To govern and democratize their multi-cloud data platform, Fox chose Atlan to make data accessible and understandable for more users than ever before. Their team then used a data product approach to create a shared language using context from sources like Unity Catalog at a single point of access, no matter the underlying technology. Now, Fox is defining an ambitious future for Metadata. With Atlan and Iceberg driving interoperability, their team prepares to build a “control plane”, creating a common system of trust and governance.

In this session, attendees will learn how to leverage Databricks' system tables to measure user adoption and track key performance indicators (KPIs) for data products. The session will focus on how organizations can use system tables to analyze user behavior, assess engagement with data products and identify usage trends that can inform product development. By measuring KPIs such as user retention, frequency of use and data queries, organizations can optimize their data products for better performance and ROI.

Summary In this episode of the Data Engineering Podcast Mai-Lan Tomsen Bukovec, Vice President of Technology at AWS, talks about the evolution of Amazon S3 and its profound impact on data architecture. From her work on compute systems to leading the development and operations of S3, Mylan shares insights on how S3 has become a foundational element in modern data systems, enabling scalable and cost-effective data lakes since its launch alongside Hadoop in 2006. She discusses the architectural patterns enabled by S3, the importance of metadata in data management, and how S3's evolution has been driven by customer needs, leading to innovations like strong consistency and S3 tables.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Mai-Lan Tomsen Bukovec about the evolutions of S3 and how it has transformed data architectureInterview IntroductionHow did you get involved in the area of data management?Most everyone listening knows what S3 is, but can you start by giving a quick summary of what roles it plays in the data ecosystem?What are the major generational epochs in S3, with a particular focus on analytical/ML data systems?The first major driver of analytical usage for S3 was the Hadoop ecosystem. What are the other elements of the data ecosystem that helped shape the product direction of S3?Data storage and retrieval have been core primitives in computing since its inception. What are the characteristics of S3 and all of its copycats that led to such a difference in architectural patterns vs. other shared data technologies? (e.g. NFS, Gluster, Ceph, Samba, etc.)How does the unified pool of storage that is exemplified by S3 help to blur the boundaries between application data, analytical data, and ML/AI data?What are some of the default patterns for storage and retrieval across those three buckets that can lead to anti-patterns which add friction when trying to unify those use cases?The age of AI is leading to a massive potential for unlocking unstructured data, for which S3 has been a massive dumping ground over the years. How is that changing the ways that your customers think about the value of the assets that they have been hoarding for so long?What new architectural patterns is that generating?What are the most interesting, innovative, or unexpected ways that you have seen S3 used for analytical/ML/Ai applications?What are the most interesting, unexpected, or challenging lessons that you have learned while working on S3?When is S3 the wrong choice?What do you have planned for the future of S3?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links AWS S3KinesisKafkaSQSEMRDrupalWordpressNetflix Blog on S3 as a Source of TruthHadoopMapReduceNasa JPLFINRA == Financial Industry Regulatory AuthorityS3 Object VersioningS3 Cross RegionS3 TablesIcebergParquetAWS KMSIceberg RESTDuckDBNFS == Network File SystemSambaGlusterFSCephMinIOS3 MetadataPhotoshop Generative FillAdobe FireflyTurbotax AI AssistantAWS Access AnalyzerData ProductsS3 Access PointAWS Nova ModelsLexisNexis ProtegeS3 Intelligent TieringS3 Principal Engineering TenetsThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary In this episode of the Data Engineering Podcast Chakravarthy Kotaru talks about scaling data operations through standardized platform offerings. From his roots as an Oracle developer to leading the data platform at a major online travel company, Chakravarthy shares insights on managing diverse database technologies and providing databases as a service to streamline operations. He explains how his team has transitioned from DevOps to a platform engineering approach, centralizing expertise and automating repetitive tasks with AWS Service Catalog. Join them as they discuss the challenges of migrating legacy systems, integrating AI and ML for automation, and the importance of organizational buy-in in driving data platform success.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.This is a pharmaceutical Ad for Soda Data Quality. Do you suffer from chronic dashboard distrust? Are broken pipelines and silent schema changes wreaking havoc on your analytics? You may be experiencing symptoms of Undiagnosed Data Quality Syndrome — also known as UDQS. Ask your data team about Soda. With Soda Metrics Observability, you can track the health of your KPIs and metrics across the business — automatically detecting anomalies before your CEO does. It’s 70% more accurate than industry benchmarks, and the fastest in the category, analyzing 1.1 billion rows in just 64 seconds. And with Collaborative Data Contracts, engineers and business can finally agree on what “done” looks like — so you can stop fighting over column names, and start trusting your data again.Whether you’re a data engineer, analytics lead, or just someone who cries when a dashboard flatlines, Soda may be right for you. Side effects of implementing Soda may include: Increased trust in your metrics, reduced late-night Slack emergencies, spontaneous high-fives across departments, fewer meetings and less back-and-forth with business stakeholders, and in rare cases, a newfound love of data. Sign up today to get a chance to win a $1000+ custom mechanical keyboard. Visit dataengineeringpodcast.com/soda to sign up and follow Soda’s launch week. It starts June 9th.Your host is Tobias Macey and today I'm interviewing Chakri Kotaru about scaling successful data operations through standardized platform offeringsInterview IntroductionHow did you get involved in the area of data management?Can you start by outlining the different ways that you have seen teams you work with fail due to lack of structure and opinionated design?Why NoSQL?Pairing different styles of NoSQL for different problemsUseful patterns for each NoSQL style (document, column family, graph, etc.)Challenges in platform automation and scaling edge casesWhat challenges do you anticipate as a result of the new pressures as a result of AI applications?What are the most interesting, innovative, or unexpected ways that you have seen platform engineering practices applied to data systems?What are the most interesting, unexpected, or challenging lessons that you have learned while working on data platform engineering?When is NoSQL the wrong choice?What do you have planned for the future of platform principles for enabling data teams/data applications?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links RiakDynamoDBSQL ServerCassandraScyllaDBCAP TheoremTerraformAWS Service CatalogBlog PostThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Summary In this episode of the Data Engineering Podcast Lior Barak shares his insights on developing a three-year strategic vision for data management. He discusses the importance of having a strategic plan for data, highlighting the need for data teams to focus on impact rather than just enablement. He introduces the concept of a "data vision board" and explains how it can help organizations outline their strategic vision by considering three key forces: regulation, stakeholders, and organizational goals. Lior emphasizes the importance of balancing short-term pressures with long-term strategic goals, quantifying the cost of data issues to prioritize effectively, and maintaining the strategic vision as a living document through regular reviews. He encourages data teams to shift from being enablers to impact creators and provides practical advice on implementing a data vision board, setting clear KPIs, and embracing a product mindset to create tangible business impacts through strategic data management.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementIt’s 2024, why are we still doing data migrations by hand? Teams spend months—sometimes years—manually converting queries and validating data, burning resources and crushing morale. Datafold's AI-powered Migration Agent brings migrations into the modern era. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today to learn how Datafold can automate your migration and ensure source to target parity. Your host is Tobias Macey and today I'm interviewing Lior Barak about how to develop your three year strategic vision for dataInterview IntroductionHow did you get involved in the area of data management?Can you start by giving an outline of the types of problems that occur as a result of not developing a strategic plan for an organization's data systems?What is the format that you recommend for capturing that strategic vision?What are the types of decisions and details that you believe should be included in a vision statement?Why is a 3 year horizon beneficial? What does that scale of time encourage/discourage in the debate and decision-making process?Who are the personas that should be included in the process of developing this strategy document?Can you walk us through the steps and processes involved in developing the data vision board for an organization?What are the time-frames or milestones that should lead to revisiting and revising the strategic objectives?What are the most interesting, innovative, or unexpected ways that you have seen a data vision strategy used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on data strategy development?When is a data vision board the wrong choice?What are some additional resources or practices that you recommend teams invest in as a supplement to this strategic vision exercise?Contact Info LinkedInSubstackParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links Vision Board OverviewEpisode 397: Defining A Strategy For Your Data ProductsMinto Pyramid PrincipleKPI == Key Performance IndicatorOKR == Objectives and Key ResultsPhil Jackson: Eleven Rings (affiliate link)The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

podcast_episode
by Val Kroll , Julie Hoyer , Tim Wilson (Analytics Power Hour - Columbus (OH) , Moe Kiss (Canva) , Michael Helbling (Search Discovery)

KPIs? Really? It's 2024. Can't we just ask Claude to generate those for us? We say… no. There are lots and lots of things that AI can take on or streamline, but getting meaningful, outcome-oriented alignment within a set of business partners as they plan a campaign, project, or initiative isn't one of them! Or, at least, we're pretty sure that's what our special guest for this episode would say. He's been thinking about (and ranting about) organizations' failure to take goal establishment, KPI identification, and target-setting seriously enough for years (we found a post he wrote in 2009 on the subject!). He also really helped us earn our explicit tag for this episode — scatologically and onanistically, we're afraid. But solid content nonetheless, so hopefully you can hear past that! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

Coalesce 2024: Food + data for better lives: Modernizing the Houston Food Bank's data stack with dbt

The Houston Food Bank (HFB) is the largest food bank in the country, serving 18 southeast Texas counties and distributing over 120 million meals in the last fiscal year through our network of 1,600+ community partners to the 1 million-plus food-insecure persons in the region.

Over the last 2+ years, HFB has leveraged dbt to modernize our data stack. Initially working with dbt Core, our data team's engineers centralized, streamlined, and automated data pipelines to provide critical KPIs to HFB Leadership. Fast-forward to today, our data team of 10, which includes engineers, analysts, and other specialists, uses dbt Cloud to manage all data transformations in our data warehouse, which now supports 30+ integrations and 70+ reports that deliver 180+ metrics to stakeholders across the organization. This organizational transformation has saved countless hours for our staff, improved organizational trust in data significantly by identifying and managing sources of truth, and delivered key insights to stakeholders across our entire organization.

A handful of examples include: - Identifying corporate donor opportunities by mining donor and volunteer data - Increasing the number of opportunities for federal and grant-based funding by being able to generate metrics across an ever-increasing number of data sources - Assessing the efficiency of school-based programs by analyzing the proportion and volume of students served to the food-insecure population of that school

HFB is committed to being a data leader in the food banking space, and we’re hoping our journey using dbt can inspire other non-profits to leverage the platform as well.

Speakers: Erwin Kristel Data Analyst Houston Food Bank

Benjamin Herndon-Miller Data Engineer Houston Food Bank

Susan Quiros Data Analyst II Houston Food Bank

Read the blog to learn about the latest dbt Cloud features announced at Coalesce, designed to help organizations embrace analytics best practices at scale https://www.getdbt.com/blog/coalesce-2024-product-announcements

One of the more mundane tasks in the business analytics world is to measure KPIs: averages, sums, ratios, etc. Typically, these are measured period over period, to see how they trend. If you're a data analyst, you've likely been asked to debug/explain a metric, because a stakeholder wants to understand why a number has changed.

This topic isn't well grounded theory, and the answers we come up with can be lacklustre. In this talk, we discuss solutions to this very common topic. We will look at a methodology we have developed at Carbonfact, and the opensource Python tool we are sharing.

Lunar, a leading Nordic digital bank, successfully implemented a data governance framework to enhance data quality and secure C-level buy-in by using SYNQ, a data reliability and observability tool. 

Their framework focuses on data ownership, criticality, and monitoring. Lunar's data team, leveraging tools like SYNQ, ensures high standards against financial crime, personalisation through AI, and reliable reporting. 

They maintain oversight through automated monitoring, use of data products, and a robust ownership model, which enhances data quality and accelerates issue resolution for their reports to executives. 

This approach enables Lunar’s data engineering and data governance teams to work in harmony, and operate efficiently without having to increase headcount.

The Data Product Management In Action podcast, brought to you by Soda and executive producer Scott Hirleman, is a platform for data product management practitioners to share insights and experiences. In Season 01, Episode 08, host Frannie Helforoush (Senior Digital Product Manager at RBC Global Asset Management) and guest Corrin Sholomo Goldenberg (Product Manager at Chainlink Labs), a practitioner with experience in both software product management and data product management, focus their conversation on building data platforms and teams from scratch. Their conversation also explores team dynamics and structure in product and data management. Takeaways include insights into KPIs and metrics to measure success, effective team structures, collaboration strategies, and the integration of diverse expertise.  About our host Frannie Helforoush: Frannie's journey began as a software engineer and evolved into a strategic product manager. Now, as a data product manager, she leverages her expertise in both fields to create impactful solutions. Frannie thrives on making data accessible and actionable, driving product innovation, and ensuring product thinking is integral to data management. Connect with Frannie on LinkedIn. About our guest Corrin Shlomo Goldenberg: Corrin is a data-driven product manager with nearly two decades of experience in the tech industry, that fuels the creation of impactful data products that make a real difference. Corrin is passionate about uncovering insights across diverse fields. Connect with Corrin on LinkedIn. All views and opinions expressed are those of the individuals and do not necessarily reflect their employers or anyone else. Join the conversation on LinkedIn. Apply to be a guest or nominate someone that you know. Do you love what you're listening to? Please rate and review the podcast, and share it with fellow practitioners you know. Your support helps us reach more listeners and continue providing valuable insights!

Data Science: The Hard Parts

This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline—machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one. Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries. With this book, you will: Understand how data science creates value Deliver compelling narratives to sell your data science project Build a business case using unit economics principles Create new features for a ML model using storytelling Learn how to decompose KPIs Perform growth decompositions to find root causes for changes in a metric Daniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).

Today I’m joined by Marnix van de Stolpe, Product Owner at Coolblue in the area of data science. Throughout our conversation, Marnix shares the story of how he joined a data science team that was developing a solution that was too focused on the delivery of a data-science metric that was not on track to solve a clear customer problem. We discuss how Marnix came to the difficult decision to throw out 18 months of data science work, what it was like to switch to a human-centered, product approach, and the challenges that came with it. Marnix shares the impact this decision had on his team and the stakeholders involved, as well as the impact on his personal career and the advice he would give to others who find themselves in the same position. Marnix is also a Founding Member of the Data Product Leadership Community and will be going much more into the details and his experience live on Zoom on November 16 @ 2pm ET for members.

Highlights/ Skip to:

I introduce Marnix, Product Owner at Coolblue and one of the original members of the Data Product Leadership Community (00:35) Marnix describes what Coolblue does and his role there (01:20) Why and how Marnix decided to throw away 18 months of machine learning work (02:51) How Marnix determined that the KPI (metric) being created wasn’t enough to deliver a valuable product (07:56) Marnix describes the conversation with his data science team on mapping the solution back to the desired outcome (11:57) What the culture is like at Coolblue now when developing data products (17:17) Marnix’s advice for data product managers who are coming into an environment where existing work is not tied to a desired outcome (18:43) Marnix and I discuss why data literacy is not the solution to making more impactful data products (21:00) The impact that Marnix’s human-centered approach to data product development has had on the stakeholders at Coolblue (24:54) Marnix shares the ultimate outcome of the product his team was developing to measure product returns (31:05) How you can get in touch with Marnix (33:45)

Links Coolblue: https://www.coolblue.nl LinkedIn: https://www.linkedin.com/in/marnixvdstolpe/

Central application for all your dbt packages - Coalesce 2023

dbt packages are libraries for dbt. Packages can produce information about best practice for your dbt project (ex: dbt project evaluator) and cloud warehouse cost overviews. Unfortunately, all theses KPIs are stored in your data warehouse and it can be painful and expensive to create data visualization dashboards. This application build automatically dashboards from dbt packages that you are using. You just need to parameter your dbt Cloud API key - that's it! In this session, you'll learn how.

Speaker: Adrien Boutreau, Head of Analytics Engineers , Infinite Lambda

Register for Coalesce at https://coalesce.getdbt.com

podcast_episode
by Val Kroll , Julie Hoyer , Tim Wilson (Analytics Power Hour - Columbus (OH) , Samantha Wong (Blackbird Ventures) , Moe Kiss (Canva) , Michael Helbling (Search Discovery)

Most of the time, we think of analytics as taking historical data for a business, munging it in various ways, and then using the results of that munging to make decisions. But, what if the business has no (or very little) historical data… because it's a startup? That's the situation venture capitalists — especially those focused on early stage startups — face constantly. We were curious as to how and where data and analytics play a role in such a world, and Sam Wong, a partner at Blackbird Ventures, joined Michael, Val, and Tim to explore the subject. Hypotheses and KPIs came up a lot, so our hypothesis that there was a relevant tie-in to the traditional focus of this show was validated, and, as a result, the valuation of the podcast itself tripled and we are accepting term sheets. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

Unleashing the Power of UX Analytics

Explore the comprehensive world of UX analytics with "Unleashing the Power of UX Analytics." This book uncovers proven techniques to collect, analyze, and interpret crucial data for enhancing user experiences. Through practical insights and methodologies, you'll master the art of creating empathetic, data-informed designs that meet user needs effectively. What this Book will help me do Master the techniques for effective qualitative and quantitative user data analysis. Learn to implement and interpret key UX metrics and KPIs to guide design processes. Understand and apply design thinking to bridge user goals with business objectives. Discover how to utilize and integrate UX analytics tools and methodologies. Learn strategies for presenting research findings and making impactful data-driven recommendations. Author(s) Jeff Hendrickson is a seasoned UX designer, researcher, and analytics expert with over a decade of experience in the field. His approach emphasizes empathy and user needs in driving design solutions, combining his background in psychology and data analysis. Jeff's ability to translate complex analytics into actionable insights makes his writing relatable and pragmatic for professionals. Who is it for? This book is perfect for UX researchers, product managers, and designers who aim to deepen their understanding of UX analytics. Whether you're an experienced professional or just beginning your journey, you'll gain the tools to make informed, user-centric decisions. If you're eager to enhance your design impact through analytics, this book is for you.