talk-data.com talk-data.com

Filter by Source

Select conferences and events

People (290 results)

See all 290 →
Showing 13 results

Activities & events

Title & Speakers Event
Xia He-Bleinagel – Head of Data & Cloud @ NOW GmbH

In this talk, Xia He-Bleinagel, Head of Data & Cloud at NOW GmbH, shares her remarkable journey from studying automotive engineering across Europe to leading modern data, cloud, and engineering teams in Germany. We dive into her transition from hands-on engineering to leadership, how she balanced family with career growth, and what it really takes to succeed in today’s cloud, data, and AI job market.

TIMECODES: 00:00 Studying Automotive Engineering Across Europe 08:15 How Andrew Ng Sparked a Machine Learning Journey 11:45 Import–Export Work as an Unexpected Career Boos t17:05 Balancing Family Life with Data Engineering Studies 20:50 From Data Engineer to Head of Data & Cloud 27:46 Building Data Teams & Tackling Tech Debt 30:56 Learning Leadership Through Coaching & Observation 34:17 Management vs. IC: Finding Your Best Fit 38:52 Boosting Developer Productivity with AI Tools 42:47 Succeeding in Germany’s Competitive Data Job Market 46:03 Fast-Track Your Cloud & Data Career 50:03 Mentorship & Supporting Working Moms in Tech 53:03 Cultural & Economic Factors Shaping Women’s Careers 57:13 Top Networking Groups for Women in Data 1:00:13 Turning Domain Expertise into a Data Career Advantage

Connect with Xia- Linkedin - https://www.linkedin.com/in/xia-he-bleinagel-51773585/ - Github - https://github.com/Data-Think-2021 - Website - https://datathinker.de/

Connect with DataTalks.Club: - Join the community - https://datatalks.club/slack.html - Subscribe to our Google calendar to have all our events in your calendar - https://calendar.google.com/calendar/r?cid=ZjhxaWRqbnEwamhzY3A4ODA5azFlZ2hzNjBAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ - Check other upcoming events - https://lu.ma/dtc-events - GitHub: https://github.com/DataTalksClub - LinkedIn - https://www.linkedin.com/company/datatalks-club/ - Twitter - https://twitter.com/DataTalksClub - Website - https://datatalks.club/

AI/ML Cloud Computing Data Engineering GitHub HTML
DataTalks.Club
Andrew Luo – CEO @ OneSchema , Tobias Macey – host

Summary In this episode of the Data Engineering Podcast Andrew Luo, CEO of OneSchema, talks about handling CSV data in business operations. Andrew shares his background in data engineering and CRM migration, which led to the creation of OneSchema, a platform designed to automate CSV imports and improve data validation processes. He discusses the challenges of working with CSVs, including inconsistent type representation, lack of schema information, and technical complexities, and explains how OneSchema addresses these issues using multiple CSV parsers and AI for data type inference and validation. Andrew highlights the business case for OneSchema, emphasizing efficiency gains for companies dealing with large volumes of CSV data, and shares plans to expand support for other data formats and integrate AI-driven transformation packs for specific industries.

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data managementData migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details. Your host is Tobias Macey and today I'm interviewing Andrew Luo about how OneSchema addresses the headaches of dealing with CSV data for your businessInterview IntroductionHow did you get involved in the area of data management?Despite the years of evolution and improvement in data storage and interchange formats, CSVs are just as prevalent as ever. What are your opinions/theories on why they are so ubiquitous?What are some of the major sources of CSV data for teams that rely on them for business and analytical processes?The most obvious challenge with CSVs is their lack of type information, but they are notorious for having numerous other problems. What are some of the other major challenges involved with using CSVs for data interchange/ingestion?Can you describe what you are building at OneSchema and the story behind it?What are the core problems that you are solving, and for whom?Can you describe how you have architected your platform to be able to manage the variety, volume, and multi-tenancy of data that you process?How have the design and goals of the product changed since you first started working on it?What are some of the major performance issues that you have encountered while dealing with CSV data at scale?What are some of the most surprising things that you have learned about CSVs in the process of building OneSchema?What are the most interesting, innovative, or unexpected ways that you have seen OneSchema used?What are the most interesting, unexpected, or challenging lessons that you have learned while working on OneSchema?When is OneSchema the wrong choice?What do you have planned for the future of OneSchema?Contact Info LinkedInParting Question From your perspective, what is the biggest gap in the tooling or technology for data management today?Closing Announcements Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.If you've learned something or tried out a project from the show then tell us about it! Email [email protected] with your story.Links OneSchemaEDI == Electronic Data InterchangeUTF-8 BOM (Byte Order Mark) CharactersSOAPCSV RFCIcebergSSIS == SQL Server Integration ServicesMS AccessDatafusionJSON SchemaSFTP == Secure File Transfer ProtocolThe intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

AI/ML CRM CSV Data Engineering Data Management Datafold Python SQL
Data Engineering Podcast
Breaking Into Data Science 2024-09-24 · 22:00

This month, Charlottesville Data Science is convening a panel discussion of data science managers and leaders to share their perspectives and advice on what it takes to get your first (or next!) job in data science or machine learning. We'll be gathering in person at Vault Virginia on the Downtown Mall.

Our panelists will include:

  • Andrew Fast, VP of Technology at DataShapes, previously a chief data scientist
  • Kimberly Scott, Senior Technical Director at Pixxel, previously a VP of data science
  • Melissa Phillips, software engineering manager and data scientist at GA-CCRi
  • Samantha Toet, data management specialist at the Virginia Equity Center
  • Patrick Harrison, data science consultant, previously Director of AI engineering at S&P Global

We look forward to seeing you there!

How to find us 
Please enter the building using the side door on 3rd Street SE, right across 3rd Street from the Front Porch Music School, then take the stairs or elevator to the first floor. We'll be gathering in the Great Hall and Gallery area.

Breaking Into Data Science

Great data presentations tell a story. Learn how to organize, visualize, and present data using Python, generative AI, and the cutting-edge Altair data visualization toolkit. Take the fast track to amazing data presentations! Data Storytelling with Altair and AI introduces a stack of useful tools and tried-and-tested methodologies that will rapidly increase your productivity, streamline the visualization process, and leave your audience inspired. In Data Storytelling with Altair and AI you’ll discover: Using Python Altair for data visualization Using Generative AI tools for data storytelling The main concepts of data storytelling Building data stories with the DIKW pyramid approach Transforming raw data into a data story Data Storytelling with Altair and AI teaches you how to turn raw data into effective, insightful data stories. You’ll learn exactly what goes into an effective data story, then combine your Python data skills with the Altair library and AI tools to rapidly create amazing visualizations. Your bosses and decision-makers will love your new presentations—and you’ll love how quick Generative AI makes the whole process! About the Technology Every dataset tells a story. After you’ve cleaned, crunched, and organized the raw data, it’s your job to share its story in a way that connects with your audience. Python’s Altair data visualization library, combined with generative AI tools like Copilot and ChatGPT, provide an amazing toolbox for transforming numbers, code, text, and graphics into intuitive data presentations. About the Book Data Storytelling with Altair and AI teaches you how to build enhanced data visualizations using these tools. The book uses hands-on examples to build powerful narratives that can inform, inspire, and motivate. It covers the Altair data visualization library, along with AI techniques like generating text with ChatGPT, creating images with DALL-E, and Python coding with Copilot. You’ll learn by practicing with each interesting data story, from tourist arrivals in Portugal to population growth in the USA to fake news, salmon aquaculture, and more. What's Inside The Data-Information-Knowledge-Wisdom (DIKW) pyramid Publish data stories using Streamlit, Tableau, and Comet Vega and Vega-Lite visualization grammar About the Reader For data analysts and data scientists experienced with Python. No previous knowledge of Altair or Generative AI required. About the Author Angelica Lo Duca is a researcher at the Institute of Informatics and Telematics of the National Research Council, Italy. The technical editor on this book was Ninoslav Cerkez. Quotes This book’s step-by-step approach, illustrated through real-world examples, makes complex data accessible and actionable. - Alexey Grigorev, DataTalks.Club A clear and concise guide to data storytelling. Highly recommended. - Andrew Madson, Insights x Design Data storytelling in a way that anyone can do! This book feels ahead of its time. - Avery Smith, Data Career Jumpstart Excellent hands-on exercises that combine two of my favorite tools: AI and the Altair library. - Jose Berengueres, Author of DataViz and Storytelling

data data-science data-science-tasks data-visualization python-viz-tools AI/ML DataViz GenAI LLM Python Tableau
O'Reilly Data Science Books
Andrew Lee – guest @ Shortwave , Tobias Macey – host

Summary

Generative AI has rapidly transformed everything in the technology sector. When Andrew Lee started work on Shortwave he was focused on making email more productive. When AI started gaining adoption he realized that he had even more potential for a transformative experience. In this episode he shares the technical challenges that he and his team have overcome in integrating AI into their product, as well as the benefits and features that it provides to their customers.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Dagster offers a new approach to building and running data platforms and data pipelines. It is an open-source, cloud-native orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. Your team can get up and running in minutes thanks to Dagster Cloud, an enterprise-class hosted solution that offers serverless and hybrid deployments, enhanced security, and on-demand ephemeral test deployments. Go to dataengineeringpodcast.com/dagster today to get started. Your first 30 days are free! Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino. Your host is Tobias Macey and today I'm interviewing Andrew Lee about his work on Shortwave, an AI powered email client

Interview

Introduction How did you get involved in the area of data management? Can you describe what Shortwave is and the story behind it?

What is the core problem that you are addressing with Shortwave?

Email has been a central part of communication and business productivity for decades now. What are the overall themes that continue to be problematic? What are the strengths that email maintains as a protocol and ecosystem? From a product perspective, what are the data challenges that are posed by email? Can you describe how you have architected the Shortwave platform?

How have the design and goals of the product changed since you started it? What are the ways that the advent and evolution of language models have influenced your product roadmap?

How do you manage the personalization of the AI functionality in your system for each user/team? For users and teams who are using Shortwave, how does it change their workflow and communication patterns? Can you describe how I would use Shortwave for managing the workflow of evaluating, planning, and promoting my podcast episodes? What are the most interesting, innovative, or unexpected ways that you have seen Shortwave used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Shortwave? When is Shortwave the wrong choice? What do you have planned for the future of Shortwave?

Contact Info

LinkedIn Blog

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with mach

AI/ML Analytics Cloud Computing Dagster Data Engineering Data Lake Data Lakehouse Data Management Delta GenAI Hudi Iceberg Python Cyber Security SQL Trino
Andy Jefferson – guest , Tobias Macey – host

Summary

Sharing data is a simple concept, but complicated to implement well. There are numerous business rules and regulatory concerns that need to be applied. There are also numerous technical considerations to be made, particularly if the producer and consumer of the data aren't using the same platforms. In this episode Andrew Jefferson explains the complexities of building a robust system for data sharing, the techno-social considerations, and how the Bobsled platform that he is building aims to simplify the process.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino. Dagster offers a new approach to building and running data platforms and data pipelines. It is an open-source, cloud-native orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. Your team can get up and running in minutes thanks to Dagster Cloud, an enterprise-class hosted solution that offers serverless and hybrid deployments, enhanced security, and on-demand ephemeral test deployments. Go to dataengineeringpodcast.com/dagster today to get started. Your first 30 days are free! Your host is Tobias Macey and today I'm interviewing Andy Jefferson about how to solve the problem of data sharing

Interview

Introduction How did you get involved in the area of data management? Can you start by giving some context and scope of what we mean by "data sharing" for the purposes of this conversation? What is the current state of the ecosystem for data sharing protocols/practices/platforms?

What are some of the main challenges/shortcomings that teams/organizations experience with these options?

What are the technical capabilities that need to be present for an effective data sharing solution?

How does that change as a function of the type of data? (e.g. tabular, image, etc.)

What are the requirements around governance and auditability of data access that need to be addressed when sharing data? What are the typical boundaries along which data access requires special consideration for how the sharing is managed? Many data platform vendors have their own interfaces for data sharing. What are the shortcomings of those options, and what are the opportunities for abstracting the sharing capability from the underlying platform? What are the most interesting, innovative, or unexpected ways that you have seen data sharing/Bobsled used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on data sharing? When is Bobsled the wrong choice? What do you have planned for the future of data sharing?

Contact Info

LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine

AI/ML Analytics Cloud Computing Dagster Data Engineering Data Lake Data Lakehouse Data Management Delta Hudi Iceberg Python Cyber Security SQL Trino
Andrew Maguire – guest , Tobias Macey – host

Summary

If your business metrics looked weird tomorrow, would you know about it first? Anomaly detection is focused on identifying those outliers for you, so that you are the first to know when a business critical dashboard isn't right. Unfortunately, it can often be complex or expensive to incorporate anomaly detection into your data platform. Andrew Maguire got tired of solving that problem for each of the different roles he has ended up in, so he created the open source Anomstack project. In this episode he shares what it is, how it works, and how you can start using it today to get notified when the critical metrics in your business aren't quite right.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management You shouldn't have to throw away the database to build with fast-changing data. You should be able to keep the familiarity of SQL and the proven architecture of cloud warehouses, but swap the decades-old batch computation model for an efficient incremental engine to get complex queries that are always up-to-date. With Materialize, you can! It’s the only true SQL streaming database built from the ground up to meet the needs of modern data products. Whether it’s real-time dashboarding and analytics, personalization and segmentation or automation and alerting, Materialize gives you the ability to work with fresh, correct, and scalable results — all in a familiar SQL interface. Go to dataengineeringpodcast.com/materialize today to get 2 weeks free! Introducing RudderStack Profiles. RudderStack Profiles takes the SaaS guesswork and SQL grunt work out of building complete customer profiles so you can quickly ship actionable, enriched data to every downstream team. You specify the customer traits, then Profiles runs the joins and computations for you to create complete customer profiles. Get all of the details and try the new product today at dataengineeringpodcast.com/rudderstack Data projects are notoriously complex. With multiple stakeholders to manage across varying backgrounds and toolchains even simple reports can become unwieldy to maintain. Miro is your single pane of glass where everyone can discover, track, and collaborate on your organization's data. I especially like the ability to combine your technical diagrams with data documentation and dependency mapping, allowing your data engineers and data consumers to communicate seamlessly about your projects. Find simplicity in your most complex projects with Miro. Your first three Miro boards are free when you sign up today at dataengineeringpodcast.com/miro. That’s three free boards at dataengineeringpodcast.com/miro. Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino. Your host is Tobias Macey and today I'm interviewing Andrew Maguire about his work on the Anomstack project and how you can use it to run your own anomaly detection for your metrics

Interview

Introduction How did you get involved in the area of data management? Can you describe what Anomstack is and the story behind it?

What are your goals for this project? What other tools/products might teams be evaluating while they consider Anom

AI/ML Analytics Cloud Computing Dashboard Data Engineering Data Lake Data Lakehouse Data Management Delta Hudi Iceberg SaaS SQL Data Streaming Trino
Jean-Yves Stephan – guest @ Data Mechanics , Tobias Macey – host

Summary Spark is one of the most well-known frameworks for data processing, whether for batch or streaming, ETL or ML, and at any scale. Because of its popularity it has been deployed on every kind of platform you can think of. In this episode Jean-Yves Stephan shares the work that he is doing at Data Mechanics to make it sing on Kubernetes. He explains how operating in a cloud-native context simplifies some aspects of running the system while complicating others, how it simplifies the development and experimentation cycle, and how you can get a head start using their pre-built Spark container. This is a great conversation for understanding how new ways of operating systems can have broader impacts on how they are being used.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Firebolt is the fastest cloud data warehouse. Visit dataengineeringpodcast.com/firebolt to get started. The first 25 visitors will receive a Firebolt t-shirt. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Jean-Yves Stephan about Data Mechanics, a cloud-native Spark platform for data engineers

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you are building at Data Mechanics and the story behind it? What are the operational characteristics of Spark that make it difficult to run in a cloud-optimized environment? How do you handle retries, state redistribution, etc. when instances get pre-empted during the middle of a job execution?

What are some of the tactics that you have found useful when designing jobs to make them more resilient to interruptions?

What are the customizations that you have had to make to Spark itself? What are some of the supporting tools that you have built to allow for running Spark in a Kubernetes environment? How is the Data Mechanics platform implemented?

How have the goals and design of the platform changed or evolved since you first began working on it?

How does running Spark in a container/Kubernetes environment change the ways that you and your customers think about how and where to use it?

How does it impact the development workflow for data engineers and data scientists?

What are some of the most interesting, unexpected, or challenging lessons that you have learned while building the Data Mechanics product? When is Spark/Data Mechanics the wrong choice? What do you have planned for the future of the platform?

Contact Info

LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Data Mechanics Databricks Stanford Andrew Ng Mining Massive Datasets Spark Kubernetes Spot Instances Infiniband Data Mechanics Spark Container Image Delight – Spark monitoring utility Terraform Blue/Green Deployment Spark Operator for Kubernetes JupyterHub Jupyter Enterprise Gateway

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

AI/ML Cloud Computing Data Engineering Data Management Databricks DWH ETL/ELT GitHub Kubernetes Looker Modern Data Stack Snowflake Spark SQL Data Streaming Terraform
Anup Segu – guest , Bobby Muldoon – guest , Andrew Gross – guest , Tobias Macey – host

Summary As a data engineer you’re familiar with the process of collecting data from databases, customer data platforms, APIs, etc. At YipitData they rely on a variety of alternative data sources to inform investment decisions by hedge funds and businesses. In this episode Andrew Gross, Bobby Muldoon, and Anup Segu describe the self service data platform that they have built to allow data analysts to own the end-to-end delivery of data projects and how that has allowed them to scale their output. They share the journey that they went through to build a scalable and maintainable system for web scraping, how to make it reliable and resilient to errors, and the lessons that they learned in the process. This was a great conversation about real world experiences in building a successful data-oriented business.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bogged down by having to manually manage data access controls, repeatedly move and copy data, and create audit reports to prove compliance? How much time could you save if those tasks were automated across your cloud platforms? Immuta is an automated data governance solution that enables safe and easy data analytics in the cloud. Our comprehensive data-level security, auditing and de-identification features eliminate the need for time-consuming manual processes and our focus on data and compliance team collaboration empowers you to deliver quick and valuable data analytics on the most sensitive data to unlock the full potential of your cloud data platforms. Learn how we streamline and accelerate manual processes to help you derive real results from your data at dataengineeringpodcast.com/immuta. Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. Your host is Tobias Macey and today I’m interviewing Andrew Gross, Bobby Muldoon, and Anup Segu about they are building pipelines at Yipit Data

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what YipitData does? What kinds of data sources and data assets are you working with? What is the composition of your data teams and how are they structured? Given the use of your data products in the financial sector how do you handle monitoring and alerting around data qualit

Analytics API CDP Cloud Computing Data Analytics Data Engineering Data Governance Data Management Datadog Kubernetes SaaS Cyber Security
Andrew Stevenson – CTO @ Lenses.io , Tobias Macey – host

Summary There are an increasing number of use cases for real time data, and the systems to power them are becoming more mature. Once you have a streaming platform up and running you need a way to keep an eye on it, including observability, discovery, and governance of your data. That’s what the Lenses.io DataOps platform is built for. In this episode CTO Andrew Stevenson discusses the challenges that arise from building decoupled systems, the benefits of using SQL as the common interface for your data, and the metrics that need to be tracked to keep the overall system healthy. Observability and governance of streaming data requires a different approach than batch oriented workflows, and this episode does an excellent job of outlining the complexities involved and how to address them.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode of the Data Engineering Podcast is sponsored by Datadog, a SaaS-based monitoring and analytics platform for cloud-scale infrastructure, applications, logs, and more. Datadog uses machine-learning based algorithms to detect errors and anomalies across your entire stack—which reduces the time it takes to detect and address outages and helps promote collaboration between Data Engineering, Operations, and the rest of the company. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial. If you start a trial and install Datadog’s agent, Datadog will send you a free T-shirt. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Andrew Stevenson about Lenses.io, a platform to provide real-time data operations for engineers

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what Lenses is and the story behind it? What is your working definition for what constitutes DataOps?

How does the Lenses platform support the cross-cutting concerns that arise when trying to bridge the different roles in an organization to deliver value with data?

What are the typical barriers to collaboration, and how does Lenses help with that?

Many different systems provide a SQL interface to streaming data on various substrates. What was your reason for building your own SQL engine and what is unique about it? What are the main challenges that you see engineers facing when working with s

Analytics Big Data Cloud Computing Data Engineering Data Management Datadog DataOps Kubernetes SaaS SQL Data Streaming
Nancy Hensley – Director of Strategy & Growth @ IBM Hybrid Cloud , Al Martin – WW VP Technical Sales @ IBM

Send us a text How did companies like Facebook and Airbnb get so big so fast? What can we learn from them? Why is data so important for growth? Nancy Hensley, Director of Strategy & Growth for IBM Hybrid Cloud, has the answers in this episode of Making Data Simple. Learn how you can use growth hacking strategies to build your business and why growth hacking isn't just for startups. Show Notes 00:25 Connect with Al Martin on Twitter (@amartin_v) and LinkedIn (linkedin.com/in/al-martin-ku) 00:36 Connect with Nancy Hensley on Twitter (@nancykoppdw) and LinkedIn (linkedin.com/in/nancyhensley) 03:30 Explore The Growth Hacker: The next VP of Marketing by Andrew Chen here: http://bit.ly/104Xa0r  03:55 Read Hacking Growth by Sean Ellis & Morgan Brown here: http://growthhacker.com/ 04:55 Visit the Jagermeister website for more information on their company and product: https://www.jagermeister.com/en-CA (must be legal age) 22:15 Find Hooked: How to Build Habit-Forming Products by Nir Eyal here: http://amzn.to/2geOTlp 31:50 Find Rework by Jason Fried here: http://amzn.to/2xIU08B Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Cloud Computing IBM Marketing
Making Data Simple
Streaming Data 2017-07-05
Andrew Psaltis – author

Streaming Data introduces the concepts and requirements of streaming and real-time data systems. The book is an idea-rich tutorial that teaches you to think about how to efficiently interact with fast-flowing data. About the Technology As humans, we're constantly filtering and deciphering the information streaming toward us. In the same way, streaming data applications can accomplish amazing tasks like reading live location data to recommend nearby services, tracking faults with machinery in real time, and sending digital receipts before your customers leave the shop. Recent advances in streaming data technology and techniques make it possible for any developer to build these applications if they have the right mindset. This book will let you join them. About the Book Streaming Data is an idea-rich tutorial that teaches you to think about efficiently interacting with fast-flowing data. Through relevant examples and illustrated use cases, you'll explore designs for applications that read, analyze, share, and store streaming data. Along the way, you'll discover the roles of key technologies like Spark, Storm, Kafka, Flink, RabbitMQ, and more. This book offers the perfect balance between big-picture thinking and implementation details. What's Inside The right way to collect real-time data Architecting a streaming pipeline Analyzing the data Which technologies to use and when About the Reader Written for developers familiar with relational database concepts. No experience with streaming or real-time applications required. About the Author Andrew Psaltis is a software engineer focused on massively scalable real-time analytics. Quotes The definitive book if you want to master the architecture of an enterprise-grade streaming application. - Sergio Fernandez Gonzalez, Accenture A thorough explanation and examination of the different systems, strategies, and tools for streaming data implementations. - Kosmas Chatzimichalis, Mach 7x A well-structured way to learn about streaming data and how to put it into practice in modern real-time systems. - Giuliano Araujo Bertoti, FATEC This book is all you need to understand what streaming is all about! - Carlos Curotto, Globant

data data-engineering streaming-messaging streaming-architecture Analytics Flink Kafka Spark Data Streaming
Storm Applied 2015-03-31
Matthew Jankowski – author , Peter Pathirana – author , Sean Allen – author

Storm Applied is a practical guide to using Apache Storm for the real-world tasks associated with processing and analyzing real-time data streams. This immediately useful book starts by building a solid foundation of Storm essentials so that you learn how to think about designing Storm solutions the right way from day one. But it quickly dives into real-world case studies that will bring the novice up to speed with productionizing Storm. About the Technology It's hard to make sense out of data when it's coming at you fast. Like Hadoop, Storm processes large amounts of data but it does it reliably and in real time, guaranteeing that every message will be processed. Storm allows you to scale with your data as it grows, making it an excellent platform to solve your big data problems. About the Book Storm Applied is an example-driven guide to processing and analyzing real-time data streams. This immediately useful book starts by teaching you how to design Storm solutions the right way. Then, it quickly dives into real-world case studies that show you how to scale a high-throughput stream processor, ensure smooth operation within a production cluster, and more. Along the way, you'll learn to use Trident for stateful stream processing, along with other tools from the Storm ecosystem. What's Inside Mapping real problems to Storm components Performance tuning and scaling Practical troubleshooting and debugging Exactly-once processing with Trident About the Reader This book moves through the basics quickly. While prior experience with Storm is not assumed, some experience with big data and real-time systems is helpful. About the Authors Sean Allen, Matthew Jankowski, and Peter Pathirana lead the development team for a high-volume, search-intensive commercial web application at TheLadders. Quotes Will no doubt become the definitive practitioner’s guide for Storm users. - From the Foreword by Andrew Montalenti The book’s practical approach to Storm will save you a lot of hassle and a lot of time. - Tanguy Leroux, Elasticsearch Great introduction to distributed computing with lots of real-world examples. - Shay Elkin, Tangent Logic Go beyond the MapReduce way of thinking to solve big data problems. - Muthusamy Manigandan, OzoneMedia

data data-engineering streaming-messaging storm Big Data ELK Hadoop
Showing 13 results