talk-data.com talk-data.com

Topic

Data Governance

data_management compliance data_quality

417

tagged

Activity Trend

90 peak/qtr
2020-Q1 2026-Q1

Activities

417 activities · Newest first

Principles of Data Fabric

In "Principles of Data Fabric," you will gain a comprehensive understanding of Data Fabric solutions and architectures. This book provides a clear picture of how to design, implement, and optimize Data Fabric solutions to tackle complex data challenges. By the end, you'll be equipped with the knowledge to unify and leverage your organizational data efficiently. What this Book will help me do Design and architect Data Fabric solutions tailored to specific organizational needs. Learn to integrate Data Fabric with DataOps and Data Mesh for holistic data management. Master the principles of Data Governance and Self-Service analytics within the Data Fabric. Implement best practices for distributed data management and regulatory compliance. Apply industry insights and frameworks to optimize Data Fabric deployment. Author(s) Sonia Mezzetta, the author of "Principles of Data Fabric," is an experienced data professional with a deep understanding of data management frameworks and architectures like Data Fabric, Data Mesh, and DataOps. With years of industry expertise, Sonia has helped organizations implement effective data strategies. Her writing combines technical know-how with an approachable style to enlighten and guide readers on their data journey. Who is it for? This book is ideal for data engineers, data architects, and business analysts who seek to understand and implement Data Fabric solutions. It will also appeal to senior data professionals like Chief Data Officers aiming to integrate Data Fabric into their enterprises. Novice to intermediate knowledge of data management would be beneficial for readers. The content provides clear pathways to achieve actionable results in data strategies.

Data Fabric and Data Mesh Approaches with AI: A Guide to AI-based Data Cataloging, Governance, Integration, Orchestration, and Consumption

Understand modern data fabric and data mesh concepts using AI-based self-service data discovery and delivery capabilities, a range of intelligent data integration styles, and automated unified data governance—all designed to deliver "data as a product" within hybrid cloud landscapes. This book teaches you how to successfully deploy state-of-the-art data mesh solutions and gain a comprehensive overview on how a data fabric architecture uses artificial intelligence (AI) and machine learning (ML) for automated metadata management and self-service data discovery and consumption. You will learn how data fabric and data mesh relate to other concepts such as data DataOps, MLOps, AIDevOps, and more. Many examples are included to demonstrate how to modernize the consumption of data to enable a shopping-for-data (data as a product) experience. By the end of this book, you will understand the data fabric concept and architecture as it relates to themes such as automated unifieddata governance and compliance, enterprise information architecture, AI and hybrid cloud landscapes, and intelligent cataloging and metadata management. What You Will Learn Discover best practices and methods to successfully implement a data fabric architecture and data mesh solution Understand key data fabric capabilities, e.g., self-service data discovery, intelligent data integration techniques, intelligent cataloging and metadata management, and trustworthy AI Recognize the importance of data fabric to accelerate digital transformation and democratize data access Dive into important data fabric topics, addressing current data fabric challenges Conceive data fabric and data mesh concepts holistically within an enterprise context Become acquainted with the business benefits of data fabric and data mesh Who This Book Is For Anyone who is interested in deploying modern data fabric architectures and data mesh solutions within an enterprise, including IT and business leaders, data governance and data office professionals, data stewards and engineers, data scientists, and information and data architects. Readers should have a basic understanding of enterprise information architecture.

Send us a text Datatopics is a podcast presented by Kevin Missoorten to talk about the fuzzy and misunderstood concepts in the world of data, analytics, and AI and get to the bottom of things.

In this episode Kevin is joined by Ruben Lasuy - a fellow consultant in the space of GDPR, data governance and data strategy - to explore the so called "Collaborative Data Ecosystems", a datatopic surfing the Solid-protocol wave. But are Solid and its Solid Pods really the trigger for this new concept or is there more at play? 

Datatopics is brought to you by Dataroots Music: The Gentlemen - DivKidThe thumbnail is generated by Midjourney

Perhaps the biggest obstacle to establishing a data culture is building trust in the data itself, making it vital for organizations to have a robust approach to data governance to ensure data quality is as high as possible. Enter Laurent Dresse, Data Governance Evangelist and Director of Professional Services at DataGalaxy. Throughout his career, Laurent has served as a bridge between IT and the rest of the business as an expert in data governance, quality, data management, and more. Throughout the episode, we discuss the state of data governance today, how data leaders and organizations can start their data governance journey, how to evangelize for data governance and gain buy-in across your organization, data governance tooling, and much more.

CompTIA Data+ DA0-001 Exam Cram

CompTIA® Data+ DA0-001 Exam Cram is an all-inclusive study guide designed to help you pass the CompTIA Data+ DA0-001 exam. Prepare for test day success with complete coverage of exam objectives and topics, plus hundreds of realistic practice questions. Extensive prep tools include quizzes, Exam Alerts, and our essential last-minute review CramSheet. The powerful Pearson Test Prep practice software provides real-time assessment and feedback with two complete exams. Covers the critical information needed to score higher on your Data+ DA0-001 exam! Understand data concepts, environments, mining, analysis, visualization, governance, quality, and controls Work with databases, data warehouses, database schemas, dimensions, data types, structures, and file formats Acquire data and understand how it can be monetized Clean and profile data so it;s more accurate, consistent, and useful Review essential techniques for manipulating and querying data Explore essential tools and techniques of modern data analytics Understand both descriptive and inferential statistical methods Get started with data visualization, reporting, and dashboards Leverage charts, graphs, and reports for data-driven decision-making Learn important data governance concepts ...

We enter 2023 in a haze of uncertainty. Enterprises must rationalize analytics projects, shift to lower-risk use cases, and control cloud costs. They also must measure the ROI of analytics projects and use data governance to reduce business risk. Published at: https://www.eckerson.com/articles/analyzing-a-downturn-five-principles-for-data-analytics-in-2023

CompTIA Data+: DAO-001 Certification Guide

The "CompTIA Data+: DAO-001 Certification Guide" is your complete resource to approaching and passing the CompTIA Data+ certification exam. This book offers clear explanations, step-by-step exercises, and practical examples designed to help you master the domain concepts essential for the DAO-001 exam. Prepare confidently and expand your career opportunities in data analytics. What this Book will help me do Understand and apply the five domains covered in the DAO-001 certification exam. Learn data preparation techniques such as collection, cleaning, and wrangling. Master descriptive statistical methods and hypothesis testing to analyze data. Create insightful visualizations and professional reports for stakeholders. Grasp the fundamentals of data governance, including data quality standards. Author(s) Cameron Dodd is an experienced data analyst and educator passionate about breaking down complex concepts. With years of teaching and hands-on analytics expertise, he has developed a student-centric approach to helping professionals achieve certification and career advancement. His structured yet relatable writing style makes learning intuitive. Who is it for? The ideal readers of this book are data professionals aiming to achieve CompTIA Data+ certification (DAO-001 exam), individuals entering the growing field of data analytics, and professionals looking to validate or expand their skills. Whether you're starting from scratch or solidifying your knowledge, this book is designed for all levels.

The Cloud Data Lake

More organizations than ever understand the importance of data lake architectures for deriving value from their data. Building a robust, scalable, and performant data lake remains a complex proposition, however, with a buffet of tools and options that need to work together to provide a seamless end-to-end pipeline from data to insights. This book provides a concise yet comprehensive overview on the setup, management, and governance of a cloud data lake. Author Rukmani Gopalan, a product management leader and data enthusiast, guides data architects and engineers through the major aspects of working with a cloud data lake, from design considerations and best practices to data format optimizations, performance optimization, cost management, and governance. Learn the benefits of a cloud-based big data strategy for your organization Get guidance and best practices for designing performant and scalable data lakes Examine architecture and design choices, and data governance principles and strategies Build a data strategy that scales as your organizational and business needs increase Implement a scalable data lake in the cloud Use cloud-based advanced analytics to gain more value from your data

Democratizing data at Zillow with dbt, Airflow, Spark, and Kubernetes

Building data pipelines is difficult—and adding a data governance and observability framework doesn’t make it any easier. But that was the task ahead for Deepak Konidena during his early days at Zillow. In this session, he’ll share how the platform they build on top of dbt, Airflow, Spark, and Kubernetes—ZSQL—eliminated the need for internal data teams to build their own DAGs, models, schemas and lineage from scratch, while also providing an easy way to enforce data quality, monitor changes, and alert on disruptions.

Check the slides here: https://docs.google.com/presentation/d/18HEil3_nXD8nYBhcg4m-Kpy8I8Na6MXI/edit?usp=sharing&ouid=110293204340061069659&rtpof=true&sd=true

Coalesce 2023 is coming! Register for free at https://coalesce.getdbt.com/.

While securing the support of senior executives is a major hurdle of implementing a data transformation program, it’s often one of the earliest and easiest hurdles to overcome in comparison to the overall program itself. Leading a data transformation program requires thorough planning, organization-wide collaboration, careful execution, robust testing, and so much more.

Vanessa Gonzalez is the Senior Director of Data and Analytics for ML & AI at Transamerica. Vanessa has experience in data transformation, leadership, and strategic direction for Data Science and Data Governance teams, and is an experienced senior data manager.

Vanessa joins the show to share how she is helping to lead Transamerica’s Data Transformation program. In this episode, we discuss the biggest challenges Transamerica has faced throughout the process, the most important factors to making any large-scale transformation successful, how to collaborate with other departments, how Vanessa structures her team, the key skills data scientists need to be successful, and much more.

Check out this month’s events: https://www.datacamp.com/data-driven-organizations-2022

Data Quality Engineering in Financial Services

Data quality will either make you or break you in the financial services industry. Missing prices, wrong market values, trading violations, client performance restatements, and incorrect regulatory filings can all lead to harsh penalties, lost clients, and financial disaster. This practical guide provides data analysts, data scientists, and data practitioners in financial services firms with the framework to apply manufacturing principles to financial data management, understand data dimensions, and engineer precise data quality tolerances at the datum level and integrate them into your data processing pipelines. You'll get invaluable advice on how to: Evaluate data dimensions and how they apply to different data types and use cases Determine data quality tolerances for your data quality specification Choose the points along the data processing pipeline where data quality should be assessed and measured Apply tailored data governance frameworks within a business or technical function or across an organization Precisely align data with applications and data processing pipelines And more

Send us a text Part 2 : Malcolm Hawker, Head of Data Strategy for Profisee, and thought leader in the field of Master Data Management (MDM) and Data Governance. If you're an MDM zealot, let's go deep!

Show Notes: 00:32 The Head of Data Strategy02:00 Make it Easy, Accurate, and Scale05:48 What is Real vs Hype09:00 Profisee's Differentiator14:26 Reach out to Malcolm15:28 How to become a CDO18:50 Focusing on outcomes24:52 The end of the worldLinkedin: https://www.linkedin.com/in/malhawker Website: https://profisee.com/

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Send us a text Part 1 : Welcome Malcolm Hawker, Head of Data Strategy for Profisee, and thought leader in the field of Master Data Management (MDM) and Data Governance. If you're an MDM zealot, let's go deep.

Show Notes 01:28 Meet Malcolm Hawker06:33 MDM's future09:48 A unique view on data fabric14:07 The rise and fall of AOL19:46 The definition of MDM26:28 MDM reference architectureLinkedin: https://www.linkedin.com/in/malhawker Website: https://profisee.com/

Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while  keeping it simple & fun. Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

We talked about:

Zhamak’s background What is Data Mesh? Domain ownership Determining what to optimize for with Data Mesh Decentralization Data as a product Self-serve data platforms Data governance Understanding Data Mesh Adopting Data Mesh Resources on implementing Data Mesh

Links:

Free 30-day code from O'Reilly: https://learning.oreilly.com/get-learning/?code=DATATALKS22 Data Mesh book: https://learning.oreilly.com/library/view/data-mesh/9781492092384/ LinkedIn: https://www.linkedin.com/in/zhamak-dehghani

ML Zoomcamp: https://github.com/alexeygrigorev/mlbookcamp-code/tree/master/course-zoomcamp

Join DataTalks.Club: https://datatalks.club/slack.html

Our events: https://datatalks.club/events.html

Data Stewardship Experience strategies (personal growth, community, societal contribution, and disruptive innovation) can meet several cognitive, social, and psychological needs, and motivate professionals to become productive data stewards. It also removes the stigma of data governance as a rigid and bureaucratic gatekeeping discipline. Published at: https://www.eckerson.com/articles/improving-the-data-stewardship-experience-dsx-productive-motivational-strategies-for-data-governance

Simplifying Data Engineering and Analytics with Delta

This book will guide you through mastering Delta, a robust and versatile protocol for data engineering and analytics. You'll discover how Delta simplifies data workflows, supports both batch and streaming data, and is optimized for analytics applications in various industries. By the end, you will know how to create high-performing, analytics-ready data pipelines. What this Book will help me do Understand Delta's unique offering for unifying batch and streaming data processing. Learn approaches to address data governance, reliability, and scalability challenges. Gain technical expertise in building data pipelines optimized for analytics and machine learning use. Master core concepts like data modeling, distributed computing, and Delta's schema evolution features. Develop and deploy production-grade data engineering solutions leveraging Delta for business intelligence. Author(s) Anindita Mahapatra is an experienced data engineer and author with years of expertise in working on Delta and data-driven solutions. Her hands-on approach to explaining complex data concepts makes this book an invaluable resource for professionals in data engineering and analytics. Who is it for? Ideal for data engineers, data analysts, and anyone involved in AI/BI workflows, this book suits learners with some basic knowledge of SQL and Python. Whether you're an experienced professional or looking to upgrade your skills with Delta, this book will provide practical insights and actionable knowledge.

Connecting the Dots with DataHub: Lakehouse and Beyond

You’ve successfully built your data lakehouse. Congratulations! But what happens when your operational data stores, streaming systems like Apache Kafka or data ingestion systems produce bad data into the lakehouse? Can you be proactive when it comes to preventing bad data from affecting your business? How can you take advantage of automation to ensure that raw data assets become well maintained data products (clear ownership, documentation and sensitivity classification) without requiring people to do redundant work across operational, ingestion and lakehouse systems? How do you get live and historical visibility into your entire data ecosystem (schemas, pipelines, data lineage, models, features and dashboards) within and across your production services, ingestion pipelines and data lakehouse? Data engineers struggle with data quality and data governance issues constantly interrupting their day and limiting their upside impact on the business.

In this talk, we will share how data engineers from our 3K+ strong DataHub community are using DataHub to track lineage, understand data quality, and prevent failures from impacting their important dashboards, ML models and features. The talk will include details of how DataHub extracts lineage automatically from Spark, schema and statistics from Delta Lake and shift-left strategies for developer-led governance.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

Data Governance and Sharing on Lakehouse | Matei Zaharia | Keynote Data + AI Summit 2022

Data + AI Summit Keynote talk from Matei Zaharia on Data Governance and Sharing on Lakehouse

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/