talk-data.com talk-data.com

Topic

Data Science

machine_learning statistics analytics

1516

tagged

Activity Trend

68 peak/qtr
2020-Q1 2026-Q1

Activities

1516 activities · Newest first

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Quickly start programming with Python 3 for data visualization with this step-by-step, detailed guide. This book’s programming-friendly approach using libraries such as leather, NumPy, Matplotlib, and Pandas will serve as a template for business and scientific visualizations. You’ll begin by installing Python 3, see how to work in Jupyter notebook, and explore Leather, Python’s popular data visualization charting library. You’ll also be introduced to the scientific Python 3 ecosystem and work with the basics of NumPy, an integral part of that ecosystem. Later chapters are focused on various NumPy routines along with getting started with Scientific Data visualization using matplotlib. You’ll review the visualization of 3D data using graphs and networks and finish up by looking at data visualization with Pandas, including the visualization of COVID-19 data sets. The code examples are tested on popular platforms like Ubuntu, Windows, and Raspberry Pi OS. WithPractical Python Data Visualization you’ll master the core concepts of data visualization with Pandas and the Jupyter notebook interface. What You'll Learn Review practical aspects of Python Data Visualization with programming-friendly abstractions Install Python 3 and Jupyter on multiple platforms including Windows, Raspberry Pi, and Ubuntu Visualize COVID-19 data sets with Pandas Who This Book Is For Data Science enthusiasts and professionals, Business analysts and managers, software engineers, data engineers.

Artificial Intelligence in Finance

The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about

Advanced Analytics in Power BI with R and Python: Ingesting, Transforming, Visualizing

This easy-to-follow guide provides R and Python recipes to help you learn and apply the top languages in the field of data analytics to your work in Microsoft Power BI. Data analytics expert and author Ryan Wade shows you how to use R and Python to perform tasks that are extremely hard, if not impossible, to do using native Power BI tools. For example, you will learn to score Power BI data using custom data science models and powerful models from Microsoft Cognitive Services. The R and Python languages are powerful complements to Power BI. They enable advanced data transformation techniques that are difficult to perform in Power BI in its default configuration but become easier by leveraging the capabilities of R and Python. If you are a business analyst, data analyst, or a data scientist who wants to push Power BI and transform it from being just a business intelligence tool into an advanced data analytics tool, then this is the book to help you do that. What You Will Learn Create advanced data visualizations via R using the ggplot2 package Ingest data using R and Python to overcome some limitations of Power Query Apply machine learning models to your data using R and Python without the need of Power BI premium capacity Incorporate advanced AI in Power BI without the need of Power BI premium capacity via Microsoft Cognitive Services, IBM Watson Natural Language Understanding, and pre-trained models in SQL Server Machine Learning Services Perform advanced string manipulations not otherwise possible in Power BI using R and Python Who This Book Is For Power users, data analysts, and data scientists who want to go beyond Power BI’s built-in functionality to create advanced visualizations, transform data in ways not otherwise supported, and automate data ingestion from sources such as SQL Server and Excel in a more concise way

Data Lake Analytics on Microsoft Azure: A Practitioner's Guide to Big Data Engineering

Get a 360-degree view of how the journey of data analytics solutions has evolved from monolithic data stores and enterprise data warehouses to data lakes and modern data warehouses. You will This book includes comprehensive coverage of how: To architect data lake analytics solutions by choosing suitable technologies available on Microsoft Azure The advent of microservices applications covering ecommerce or modern solutions built on IoT and how real-time streaming data has completely disrupted this ecosystem These data analytics solutions have been transformed from solely understanding the trends from historical data to building predictions by infusing machine learning technologies into the solutions Data platform professionals who have been working on relational data stores, non-relational data stores, and big data technologies will find the content in this book useful. The book also can help you start your journey into the data engineer world as it provides an overview of advanced data analytics and touches on data science concepts and various artificial intelligence and machine learning technologies available on Microsoft Azure. What Will You Learn You will understand the: Concepts of data lake analytics, the modern data warehouse, and advanced data analytics Architecture patterns of the modern data warehouse and advanced data analytics solutions Phases—such as Data Ingestion, Store, Prep and Train, and Model and Serve—of data analytics solutions and technology choices available on Azure under each phase In-depth coverage of real-time and batch mode data analytics solutions architecture Various managed services available on Azure such as Synapse analytics, event hubs, Stream analytics, CosmosDB, and managed Hadoop services such as Databricks and HDInsight Who This Book Is For Data platform professionals, database architects, engineers, and solution architects

Dados nos permitem fazer um trabalho muito importante quando precisamos responder perguntas do tipo “O que”, mas, quando precisamos responder as do tipo “Por que” temos um grande aliado para isso: o UX Research. Essa área é responsável por pensar em formas de pesquisa para entender o comportamento e experiência do usuário no seu produto, plataforma, ou serviço. O mais interessante, é que as vezes as duas visões podem ser bem discrepantes, mas isso não é necessariamente ruim, com você verá nesse episódio.

Para nos contar como está sendo unir Design, UX Research e Data Science no dia a dia, convidamos a galera da XP Inc. para esse papo. Com a gente está o Julian Jordan — Head of Design Research & Quantified Design— e o Fausto Costa — Data Scientist.

Acesse nosso post no Medium para ter acesso as dicas que falamos: https://medium.com/data-hackers/dados-design-e-ux-research-data-hackers-podcast-31-27c58f3eb911

Learn Data Science Using SAS Studio: A Quick-Start Guide

Do you want to create data analysis reports without writing a line of code? This book introduces SAS Studio, a free data science web browser-based product for educational and non-commercial purposes. The power of SAS Studio comes from its visual point-and-click user interface that generates SAS code. It is easier to learn SAS Studio than to learn R and Python to accomplish data cleaning, statistics, and visualization tasks. The book includes a case study about analyzing the data required for predicting the results of presidential elections in the state of Maine for 2016 and 2020. In addition to the presidential elections, the book provides real-life examples including analyzing stocks, oil and gold prices, crime, marketing, and healthcare. You will see data science in action and how easy it is to perform complicated tasks and visualizations in SAS Studio.You will learn, step-by-step, how to do visualizations, including maps. In most cases, you will not need a line of code as you work with the SAS Studio graphical user interface. The book includes explanations of the code that SAS Studio generates automatically. You will learn how to edit this code to perform more complicated advanced tasks. The book introduces you to multiple SAS products such as SAS Viya, SAS Analytics, and SAS Visual Statistics. What You Will Learn Become familiar with SAS Studio IDE Understand essential visualizations Know the fundamental statistical analysis required in most data science and analytics reports Clean the most common data set problems Use linear progression for data prediction Write programs in SAS Get introduced to SAS-Viya, which is more potent than SAS studio Who This Book Is For A general audience of people who are new to data science, students, and data analysts and scientists who are experiencedbut new to SAS. No programming or in-depth statistics knowledge is needed.

Product Analytics: Applied Data Science Techniques for Actionable Consumer Insights

This guide shows how to combine data science with social science to gain unprecedented insight into customer behavior, so you can change it. Joanne Rodrigues-Craig bridges the gap between predictive data science and statistical techniques that reveal why important things happen -- why customers buy more, or why they immediately leave your site -- so you can get more behaviors you want and less you don’t. Drawing on extensive enterprise experience and deep knowledge of demographics and sociology, Rodrigues-Craig shows how to create better theories and metrics, so you can accelerate the process of gaining insight, altering behavior, and earning business value. You’ll learn how to: Develop complex, testable theories for understanding individual and social behavior in web products Think like a social scientist and contextualize individual behavior in today’s social environments Build more effective metrics and KPIs for any web product or system Conduct more informative and actionable A/B tests Explore causal effects, reflecting a deeper understanding of the differences between correlation and causation Alter user behavior in a complex web product Understand how relevant human behaviors develop, and the prerequisites for changing them Choose the right statistical techniques for common tasks such as multistate and uplift modeling Use advanced statistical techniques to model multidimensional systems Do all of this in R (with sample code available in a separate code manual)

BigQuery for Data Warehousing: Managed Data Analysis in the Google Cloud

Create a data warehouse, complete with reporting and dashboards using Google’s BigQuery technology. This book takes you from the basic concepts of data warehousing through the design, build, load, and maintenance phases. You will build capabilities to capture data from the operational environment, and then mine and analyze that data for insight into making your business more successful. You will gain practical knowledge about how to use BigQuery to solve data challenges in your organization. BigQuery is a managed cloud platform from Google that provides enterprise data warehousing and reporting capabilities. Part I of this book shows you how to design and provision a data warehouse in the BigQuery platform. Part II teaches you how to load and stream your operational data into the warehouse to make it ready for analysis and reporting. Parts III and IV cover querying and maintaining, helping you keep your information relevant with other Google Cloud Platform services and advanced BigQuery. Part V takes reporting to the next level by showing you how to create dashboards to provide at-a-glance visual representations of your business situation. Part VI provides an introduction to data science with BigQuery, covering machine learning and Jupyter notebooks. What You Will Learn Design a data warehouse for your project or organization Load data from a variety of external and internal sources Integrate other Google Cloud Platform services for more complex workflows Maintain and scale your data warehouse as your organization grows Analyze, report, and create dashboards on the information in the warehouse Become familiar with machine learning techniques using BigQuery ML Who This Book Is For Developers who want to provide business users with fast, reliable, and insightful analysis from operational data, and data analysts interested in a cloud-based solution that avoids the pain of provisioning their own servers.

Big Data Meets Survey Science

O ffers a clear view of the utility and place for survey data within the broader Big Data ecosystem This book presents a collection of snapshots from two sides of the Big Data perspective. It assembles an array of tangible tools, methods, and approaches that illustrate how Big Data sources and methods are being used in the survey and social sciences to improve official statistics and estimates for human populations. It also provides examples of how survey data are being used to evaluate and improve the quality of insights derived from Big Data. Big Data Meets Survey Science: A Collection of Innovative Methods shows how survey data and Big Data are used together for the benefit of one or more sources of data, with numerous chapters providing consistent illustrations and examples of survey data enriching the evaluation of Big Data sources. Examples of how machine learning, data mining, and other data science techniques are inserted into virtually every stage of the survey lifecycle are presented. Topics covered include: Total Error Frameworks for Found Data; Performance and Sensitivities of Home Detection on Mobile Phone Data; Assessing Community Wellbeing Using Google Street View and Satellite Imagery; Using Surveys to Build and Assess RBS Religious Flag; and more. Presents groundbreaking survey methods being utilized today in the field of Big Data Explores how machine learning methods can be applied to the design, collection, and analysis of social science data Filled with examples and illustrations that show how survey data benefits Big Data evaluation Covers methods and applications used in combining Big Data with survey statistics Examines regulations as well as ethical and privacy issues Big Data Meets Survey Science: A Collection of Innovative Methods is an excellent book for both the survey and social science communities as they learn to capitalize on this new revolution. It will also appeal to the broader data and computer science communities looking for new areas of application for emerging methods and data sources.

podcast_episode
by Val Kroll , Debbie Berebichez (Metis) , Julie Hoyer , Tim Wilson (Analytics Power Hour - Columbus (OH) , Moe Kiss (Canva) , Michael Helbling (Search Discovery)

Did curiosity kill the cat? Perhaps. A claim could be made that a LACK of curiosity can (and should!) kill an analyst's career! On this episode, Dr. Debbie Berebichez, who, as Tim noted, sorta' pegs out on the extreme end of the curiosity spectrum, joined the show to explore the subject: the societal norms that (still!) often discourage young women from exploring and developing their curiosity; exploratory data analysis as one way to spark curiosity about a data set; the (often) misguided expectations of "the business" when it comes to analytics and data science (and the imperative to continue to promote data literacy to combat them), and more! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

Customer Data and Privacy: The Insights You Need from Harvard Business Review

Collect data and build trust. With the rise of data science and machine learning, companies are awash in customer data and powerful new ways to gain insight from that data. But in the absence of regulation and clear guidelines from most federal or state governments, it's difficult for companies to understand what qualifies as reasonable use and then determine how to act in the best interest of their customers. How do they build, not erode, trust? Customer Data and Privacy: The Insights You Need from Harvard Business Review brings you today's most essential thinking on customer data and privacy to help you understand the tangled interdependencies and complexities of this evolving issue. The lessons in this book will help you develop strategies that allow your company to be a good steward, collecting, using, and storing customer data responsibly. Business is changing. Will you adapt or be left behind? Get up to speed and deepen your understanding of the topics that are shaping your company's future with the Insights You Need from Harvard Business Review series. Featuring HBR's smartest thinking on fast-moving issues—blockchain, cybersecurity, AI, and more—each book provides the foundational introduction and practical case studies your organization needs to compete today and collects the best research, interviews, and analysis to get it ready for tomorrow. You can't afford to ignore how these issues will transform the landscape of business and society. The Insights You Need series will help you grasp these critical ideas—and prepare you and your company for the future.

Statistical Thinking, 3rd Edition

Apply statistics in business to achieve performance improvement Statistical Thinking: Improving Business Performance, 3rd Edition helps managers understand the role of statistics in implementing business improvements. It guides professionals who are learning statistics in order to improve performance in business and industry. It also helps graduate and undergraduate students understand the strategic value of data and statistics in arriving at real business solutions. Instruction in the book is based on principles of effective learning, established by educational and behavioral research. The authors cover both practical examples and underlying theory, both the big picture and necessary details. Readers gain a conceptual understanding and the ability to perform actionable analyses. They are introduced to data skills to improve business processes, including collecting the appropriate data, identifying existing data limitations, and analyzing data graphically. The authors also provide an in-depth look at JMP software, including its purpose, capabilities, and techniques for use. Updates to this edition include: A new chapter on data, assessing data pedigree (quality), and acquisition tools Discussion of the relationship between statistical thinking and data science Explanation of the proper role and interpretation of p-values (understanding of the dangers of “p-hacking”) Differentiation between practical and statistical significance Introduction of the emerging discipline of statistical engineering Explanation of the proper role of subject matter theory in order to identify causal relationships A holistic framework for variation that includes outliers, in addition to systematic and random variation Revised chapters based on significant teaching experience Content enhancements based on student input This book helps readers understand the role of statistics in business before they embark on learning statistical techniques.

GNU Octave by Example: A Fast and Practical Approach to Learning GNU Octave

Get a quick start to learn, understand, and apply GNU Octave using a math- and programming-friendly approach. This book focuses on an end-to-end track to teach mathematical programming, data science, signal processing, and image processing with GNU Octave. GNU Octave by Example starts with an introduction to GNU Octave, a free and open-source alternative to MATLAB. Next, it explains the processes to install GNU Octave on popular operating systems such as Windows, Ubuntu, Raspberry Pi, and other platforms. Further, it covers hands-on exercises with GNU Octave exploring the basic functionality and command line in interactive mode. This is followed by covering matrices and various operations including how to read and analyze data from various sources. Moving forward, it introduces commonly used programming constructs in data visualization. It explains 2D and 3D data visualization along with data analysis. It also demonstrates the concepts related to geometry and its application with GNU Octave. It concludes with coverage of signal processing followed by image, video, and audio processing techniques. After reading this book, you will be able to write your own programs for scientific and numerical applications. What You Will Learn ● Understand the practical aspects of GNU Octave with math and programming-friendly abstractions ● Install GNU Octave on multiple platforms including Windows, Raspberry Pi, and Ubuntu ● Work with GNU Octave using the GUI, the command line, and Jupyter notebooks ● Implement 2D and 3D data visualization and analysis with GNU Octave Who This Book Is For Software engineers, data engineers, data science enthusiasts, and computer vision professionals.

Send us a text Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.

Abstract Hosted by Al Martin, VP, Data and AI Expert Services and Learning at IBM, Making Data Simple provides the latest thinking on big data, A.I., and the implications for the enterprise from a range of experts.

This week on Making Data Simple, we have Wennie Allen Business Director, Data Science and AI Elite Team and Carlo Appugliese Program Director – Data &AI, Data Science Elite Team. This week we talk about agile AI and remote data science. Carlo discusses his book, while Wennie talks about the secret sauce.

Show Notes 2:56 – How do we get people to adopt AI? 4:49 – Carlo’s book 6:15 – Why do we call it agile AI? 11:12 – Six weeks to get it done! 15:07 – Where are we at with AI? 16:54 - Problems with AI today 22:05 – Secret sauce 26:31 - Process and methodology  30:22 – Talk data 34:19 – Integration, trust, and quick deployment 36:10 – Working remote 39:40 – How do you engage? Remote Data Science Website: http://ibm.biz/RemoteDataScience Agile AI Blog: http://ibm.biz/DSE-AgileAI-Blog Agile AI Book:   http://ibm.biz/DSE-AgileAI Community: http://ibm.biz/DSE-Community Chat with the Lab: http://ibm.biz/DSE-ChatWithTheLab Consultation: http://ibm.biz/DSE-Consultation Blogs:  Virtual Data Science can rise to the challenge in unprecedented times by Wennie Allen Data Science and AI from anywhere... by Carlo Appugliese Wennie on LinkedIn linkedin.com/in/wennie-allen Carlo on LinkedIn linkedin.com/in/carloappugliese    Connect with the Team Producer Kate Brown - LinkedIn. Producer Steve Templeton - LinkedIn. Host Al Martin - LinkedIn and Twitter.  Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

The Data Science Workshop - Second Edition

The Data Science Workshop provides a comprehensive introduction to building real-world data science projects. Through a hands-on approach, you will learn how to analyze data, build machine learning models, and deploy them effectively in various scenarios. This book is designed to equip you with the skills to confidently tackle data science challenges. What this Book will help me do Understand the differences between supervised and unsupervised learning to select the appropriate technique. Master data manipulation and analysis using popular Python libraries like pandas and scikit-learn. Develop skills in regression, classification, and clustering to solve diverse data science problems. Learn advanced methods to improve model accuracy, including hyperparameter tuning and feature engineering. Implement and deploy machine learning models efficiently in production workflows. Author(s) The authors of The Data Science Workshop are experienced professionals and educators in the field of data science and machine learning. They have extensive expertise in using practical methods to solve data challenges and have a passion for teaching others through engaging and clear instructional material. Who is it for? This book is ideal for aspiring data analysts, data scientists, and business analysts who wish to build foundational skills in data science. It caters to those new to the field and professionals transitioning to a data-centric role, providing practical knowledge without requiring an advanced mathematical background. Familiarity with Python is recommended.

Many companies want to use data to gain a competitive edge in their industries--this can pose a challenge for organizations whose core business is not inherently technical. To make things worst lots of providers and consulting firms push unproven strategies and technical solutions that don't work. My guest today, Heather Smith is a data leader who has over 15 years of experience in the data science field, including recognition as one of Seattle's Top 5% of Women Engineers by Women Impact Tech.

As co-founder of Rove Technologies, Heather teaches how to set realistic expectations, when it comes to senior management and why it's so important. She shares real-world examples of where expectations were set, and unfortunately when they were not. In a more personal tone, she discusses how her female appearance has impacted her professionally. Listen in to hear Heather talk about the role of executive expectation management in data science and how you can start managing expectations correctly!

 [26:51]  - The role of executives in data management​ [29:54] - Heather on Data Literacy: "Often very smart people including executives, become dumb in the face of data."​ [45:48]  - Whether the team that built the successful model should own the model​ For full show notes, and the links mentioned visit: https://bibrainz.com/podcast/64

Enjoyed the Show?  Please leave us a review on iTunes. Check out our sponsor! Are you a BI/Analytics leader who is tired of creating useless reports or dashboards? Are you struggling to get users over to your BI portal? Ever thought about embedding your analytics? If so, then you have to check out Logi Composer, the first ever out of the box development experience for teams who want to get up and running fast! Logi Analytics is offering AoF Listeners a special 14-day trial to get up and running fast! Just visit - logianalytics.com/aof

Hands-On Graph Analytics with Neo4j

This book is your gateway into the world of graph analytics with Neo4j, empowering you to reveal insights hidden in connected data. By diving into real-world examples, you'll learn how to implement algorithms to uncover relationships and patterns critical for applications such as fraud detection, recommendation systems, and more. What this Book will help me do Understand fundamental concepts of the Neo4j graph database, including nodes, relationships, and Cypher querying. Effectively explore and visualize data relationships, enhancing applications like search engines and recommendations. Gain proficiency in graph algorithms such as pathfinding and spatial search to solve key business challenges. Leverage Neo4j's Graph Data Science library for machine learning and predictive analysis tasks. Implement web applications that utilize Neo4j for scalable, production-ready graph data management. Author(s) None Scifo is an experienced author in graph technologies, extensively working with Neo4j. He brings practical knowledge and a hands-on approach to the forefront, making complex topics accessible to learners of all levels. Through his work, he continues to inspire readers to harness the power of connected data effectively. Who is it for? This book is perfect for professionals like data analysts, business analysts, graph analysts, and database developers aiming to delve into graph data. It caters to those seeking to solve problems through graph analytics, whether in fraud detection, recommendation systems, or other fields. Some prior experience with Neo4j is recommended for maximal benefit.

Semantic Modeling for Data

What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges

Um dos campos que mais estão crescendo e sendo aplicados em AI e Data Science é o NLP, o Processamento de Linguagem Natural. Mas você sabe o que é o Natural Language Processing e como começar a aplicar nos seus projetos? Nesse episódio de hoje vamos entrar de cabeça nesse assunto altamente importante para quem precisa lidar com dados de texto e voz.

E, para esse episódio, convidamos Flávio Clésio — Machine Learning Engineer na MyHammer — , e Ahirton Lopes — PhD Student no Mackensie e Data Scientist na Magna Sistemas — para que eles possam nos contar como tem sido a experiência deles aplicando NLP na indústria e academia.

Acesse nosso post no Medium para ter acesso as informações que falamos no episódio: https://medium.com/data-hackers/o-que-%C3%A9-natural-language-processing-o-tal-do-nlp-data-hackers-podcast-27-9819c1bed5bd

Send us a text Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.

Abstract Hosted by Al Martin, VP, Data and AI Expert Services and Learning at IBM, Making Data Simple provides the latest thinking on big data, A.I., and the implications for the enterprise from a range of experts. This week on Making Data Simple, we have Debbie Berebichez she is the first Mexican woman to graduate from Stanford University with a PhD in Physics, and she uses her education and background to make science approachable to a wide range of audiences. Debbie co-hosts numerous TV shows, where she uses her knowledge of physics to explain the science behind extraordinary engineering feats. Deborah is the Chief Data Scientist at Metis where she leads the creation and growth of exceptional data science training opportunities. Deborah completed two postdoctoral fellowships at Columbia University's Applied Math and Physics Department and at NYU's Courant Institute for Mathematical Sciences where she carried out research in the area of acoustic waves. She invented a highly effective technique in the field of wireless communications whereby a cell phone user can communicate with a desired target user in a location far away.  Show Notes 2:10 – Debbie’s mission statement 8:58 – Mentorship 11:25 - Debbie talks about Discovery TV shows 15:04 – Debbie discusses her Ted Talk 19:20 - Data literacy discussion 30:35 – Physicist to data science  33:22 – Training and data scientist  38:43 - What makes the perfect data science implementation in a company? 41:53 – Debbie’s advice for young girls Debbie Berebichez - Instagram Debbie Berebichez - Twitter Debbie Berebichez - LinkedIn Debbie Berebichez - Facebook Statistic and the art of deception  Connect with the Team Producer Kate Brown - LinkedIn. Producer Steve Templeton - LinkedIn. Host Al Martin - LinkedIn and Twitter.  Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.