talk-data.com talk-data.com

Topic

Delta

Delta Lake

data_lake acid_transactions time_travel file_format storage

347

tagged

Activity Trend

117 peak/qtr
2020-Q1 2026-Q1

Activities

347 activities · Newest first

AI-Driven Drug Discovery: Accelerating Molecular Insights With NVIDIA and Databricks

This session is repeated. In the race to revolutionize healthcare and drug discovery, biopharma companies are turning to AI to streamline workflows and unlock new scientific insights. This session, we will explore how NVIDIA BioNeMo, combined with Databricks Delta Lakehouse, can be used for advancing drug discovery for critical applications like molecular structure modeling, protein folding and diagnostics. We’ll demonstrate how BioNeMo pre-trained models can run inference on data securely stored in Delta Lake, delivering actionable insights. By leveraging containerized solutions on Databricks’ ML Runtime with GPU acceleration, users can achieve significant performance gains compared to traditional CPU-based computation.

AI Powering Epsilon's Identity Strategy: Unified Marketing Platform on Databricks

Join us to hear about how Epsilon Data Management migrated Epsilon’s unique, AI-powered marketing identity solution from multi-petabyte on-prem Hadoop and data warehouse systems to a unified Databricks Lakehouse platform. This transition enabled Epsilon to further scale its Decision Sciences solution and enable new cloud-based AI research capabilities on time and within budget, without being bottlenecked by the resource constraints of on-prem systems. Learn how Delta Lake, Unity Catalog, MLflow and LLM endpoints powered massive data volume, reduced data duplication, improved lineage visibility, accelerated Data Science and AI, and enabled new data to be immediately available for consumption by the entire Epsilon platform in a privacy-safe way. Using the Databricks platform as the base for AI and Data Science at global internet scale, Epsilon deploys marketing solutions across multiple cloud providers and multiple regions for many customers.

As first-party data becomes increasingly invaluable to organizations, Walmart Data Ventures is dedicated to bringing to life new applications of Walmart’s first-party data to better serve its customers. Through Scintilla, its integrated insights ecosystem, Walmart Data Ventures continues to expand its offerings to deliver insights and analytics that drive collaboration between our merchants, suppliers, and operators.​Scintilla users can now access Walmart data using Cloud Feeds, based on Databricks Delta Sharing technologies. In the past, Walmart used API-based data sharing models, which required users to possess certain skills and technical attributes that weren’t always available. Now, with Cloud Feeds, Scintilla users can more easily access data without a dedicated technical team behind the scenes making it happen. Attendees will gain valuable insights into how Walmart has built its robust data sharing architecture and strategies to design scalable and collaborative data sharing architectures in their own organizations.

Delta Kernel for Rust and Java

Delta Kernel makes it easy for engines and connectors to read and write Delta tables. It supports many Delta features and robust connectors, including DuckDB, Clickhouse, Spice AI and delta-dotnet. In this session, we'll cover lessons learned about how to build a high-performance library that lets engines integrate the way they want, while not having to worry about the details of the Delta protocol. We'll talk through how we streamlined the API as well as its changes and underlying motivations. We'll discuss some new highlight features like write support, and the ability to do CDF scans. Finally we'll cover the future roadmap for the Kernel project and what you can expect from the project over the coming year.

In this session, we will explore how Genie, an AI-driven platform transformed HVAC operational insights by leveraging Databricks offerings like Apache Spark, Delta Lake and the Databricks Data Intelligence Platform.Key contributions: Real-time data processing: Lakeflow Declarative Pipelines and Apache Spark™ for efficient data ingestion and real-time analysis. Workflow orchestration: Databricks Data Intelligence Platform to orchestrate complex workflows and integrate various data sources and analytical tools. Field Data Integration: Incorporating real-time field data into design and algorithm development, enabling engineers to make informed adjustments and optimize performance. By analyzing real-time data from HVAC installations, Genie identified discrepancies between design specs and field performance, allowing engineers to optimize algorithms, reduce inefficiencies and improve customer satisfaction. Discover how Genie revolutionized HVAC management and apply to your projects.

How HP Is Optimizing the 3D Printing Supply Chain Using Delta Sharing

HP’s 3D Print division empowers manufacturers with telemetry data to optimize operations and streamline maintenance. Using Delta Sharing, Unity Catalog and AI/BI dashboards, HP provides a secure, scalable solution for data sharing and analytics. Delta Sharing D2O enables seamless data access, even for customers not on Databricks. Apigee masks private URLs, and Unity Catalog enhances security by managing data assets. Predictive maintenance with Mosaic AI boosts uptime by identifying issues early and alerting support teams. Custom dashboards and sample code let customers run analytics using any supported client, while Apigee simplifies access by abstracting complexity. Insights from A/BI dashboards help HP refines data strategy, aligning solutions with customer needs despite the complexity of diverse technologies, fragmented systems and customer-specific requirements. This fosters trust, drives innovation,and strengthens HP as a trusted partner for scalable, secure data solutions.

Unifying Data Delivery: Using Databricks as Your Enterprise Serving Layer

This session will take you on our journey of integrating Databricks as the core serving layer in a large enterprise, demonstrating how you can build a unified data platform that meets diverse business needs. We will walk through the steps for constructing a central serving layer by leveraging Databricks’ SQL Warehouse to efficiently deliver data to analytics tools and downstream applications. To tackle low latency requirements, we’ll show you how to incorporate an interim scalable relational database layer that delivers sub-second performance for hot data scenarios. Additionally, we’ll explore how Delta Sharing enables secure and cost-effective data distribution beyond your organization, eliminating silos and unnecessary duplication for a truly end-to-end centralized solution. This session is perfect for data architects, engineers and decision-makers looking to unlock the full potential of Databricks as a centralized serving hub.

Delta-rs Turning Five: Growing Pains and Life Lessons

Five years ago, the delta-rs project embarked on a journey to bring Delta Lake's robust capabilities to the Rust & Python ecosystem. In this talk, we'll delve into the triumphs, tribulations and lessons learned along the way. We'll explore how delta-rs has matured alongside the thriving Rust data ecosystem, adapting to its evolving landscape and overcoming the challenges of maintaining a complex data project. Join us as we share insights into the project's evolution, the symbiotic relationship between delta-rs and the Rust community, and the current hurdles and future directions that lie ahead. Audio for this session is delivered in the conference mobile app, you must bring your own headphones to listen.

This course provides a comprehensive review of DevOps principles and their application to Databricks projects. It begins with an overview of core DevOps, DataOps, continuous integration (CI), continuous deployment (CD), and testing, and explores how these principles can be applied to data engineering pipelines. The course then focuses on continuous deployment within the CI/CD process, examining tools like the Databricks REST API, SDK, and CLI for project deployment. You will learn about Databricks Asset Bundles (DABs) and how they fit into the CI/CD process. You’ll dive into their key components, folder structure, and how they streamline deployment across various target environments in Databricks. You will also learn how to add variables, modify, validate, deploy, and execute Databricks Asset Bundles for multiple environments with different configurations using the Databricks CLI. Finally, the course introduces Visual Studio Code as an Interactive Development Environment (IDE) for building, testing, and deploying Databricks Asset Bundles locally, optimizing your development process. The course concludes with an introduction to automating deployment pipelines using GitHub Actions to enhance the CI/CD workflow with Databricks Asset Bundles. By the end of this course, you will be equipped to automate Databricks project deployments with Databricks Asset Bundles, improving efficiency through DevOps practices. Pre-requisites: Strong knowledge of the Databricks platform, including experience with Databricks Workspaces, Apache Spark, Delta Lake, the Medallion Architecture, Unity Catalog, Delta Live Tables, and Workflows. In particular, knowledge of leveraging Expectations with Lakeflow Declarative Pipelines. Labs : Yes Certification Path: Databricks Certified Data Engineer Professional

De-Risking Investment Decisions: QCG's Smarter Deal Evaluation Process Leveraging Databricks

Quantum Capital Group (QCG) screens hundreds of deals across the global Sustainable Energy Ecosystem, requiring deep technical due diligence. With over 1.5 billion records sourced from public, premium and proprietary datasets, their challenge was how to efficiently curate, analyze and share this data to drive smarter investment decisions. QCG partnered with Databricks & Tiger Analytics to modernize its data landscape. Using Delta tables, Spark SQL, and Unity Catalog, the team built a golden dataset that powers proprietary evaluation models and automates complex workflows. Data is now seamlessly curated, enriched and distributed — both internally and to external stakeholders — in a secure, governed and scalable way. This session explores how QCG’s investment in data intelligence has turned an overwhelming volume of information into a competitive advantage, transforming deal evaluation into a faster, more strategic process.

This course will guide participants through a comprehensive exploration of machine learning model operations, focusing on MLOps and model lifecycle management. The initial segment covers essential MLOps components and best practices, providing participants with a strong foundation for effectively operationalizing machine learning models. In the latter part of the course, we will delve into the basics of the model lifecycle, demonstrating how to navigate it seamlessly using the Model Registry in conjunction with the Unity Catalog for efficient model management. By the course's conclusion, participants will have gained practical insights and a well-rounded understanding of MLOps principles, equipped with the skills needed to navigate the intricate landscape of machine learning model operations. Pre-requisites: Familiarity with Databricks workspace and notebooks, familiarity with Delta Lake and Lakehouse, intermediate level knowledge of Python (e.g. understanding of basic MLOps concepts and practices as well as infrastructure and importance of monitoring MLOps solutions) Labs: Yes Certification Path: Databricks Certified Machine Learning Associate

Site to Insight: Powering Construction Analytics Through Delta Sharing

At Procore, we're transforming the construction industry through innovative data solutions. This session unveils how we've supercharged our analytics offerings using a unified lakehouse architecture and Delta Sharing, delivering game-changing results for our customers and our business and how data professionals can unlock the full potential of their data assets and drive meaningful business outcomes. Key highlights: Learn how we've implemented seamless, secure sharing of large datasets across various BI tools and programming languages, dramatically accelerating time-to-insights for our customers Discover our approach to sharing dynamically filtered subsets of data across our numerous customers with cross-platform view sharing We'll demonstrate how our architecture has eliminated the need for data replication, fostering a more efficient, collaborative data ecosystem

Enabling Sleep Science Research With Databricks and Delta Sharing

Leveraging Databricks as a platform, we facilitate the sharing of anonymized datasets across various Databricks workspaces and accounts, spanning multiple cloud environments such as AWS, Azure, and Google Cloud. This capability, powered by Delta Sharing, extends both within and outside Sleep Number, enabling accelerated insights while ensuring compliance with data security and privacy standards. In this session, we will showcase our architecture and implementation strategy for data sharing, highlighting the use of Databricks’ Unity Catalog and Delta Sharing, along with integration with platforms like Jira, Jenkins, and Terraform to streamline project management and system orchestration.

From Datavault to Delta Lake: Streamlining Data Sync with Lakeflow Connect

In this session, we will explore the Australian Red Cross Lifeblood's approach to synchronizing an Azure SQL Datavault 2.0 (DV2.0) implementation with Unity Catalog (UC) using Lakeflow Connect. Lifeblood's DV2.0 data warehouse, which includes raw vault (RV) and business vault (BV) tables, as well as information marts defined as views, required a multi-step process to achieve data/business logic sync with UC. This involved using Lakeflow Connect to ingest RV and BV data, followed by a custom process utilizing JDBC to ingest view definitions, and the automated/manual conversion of T-SQL to Databricks SQL views, with Lakehouse Monitoring for validation. In this talk, we will share our journey, the design decisions we made, and how the resulting solution now supports analytics workloads, analysts, and data scientists at Lifeblood.

Lakeflow Declarative Pipelines Integrations and Interoperability: Get Data From — and to — Anywhere

This session is repeated.In this session, you will learn how to integrate Lakeflow Declarative Pipelines with external systems in order to ingest and send data virtually anywhere. Lakeflow Declarative Pipelines is most often used in ingestion and ETL into the Lakehouse. New Lakeflow Declarative Pipelines capabilities like the Lakeflow Declarative Pipelines Sinks API and added support for Python Data Source and ForEachBatch have opened up Lakeflow Declarative Pipelines to support almost any integration. This includes popular Apache Spark™ integrations like JDBC, Kafka, External and managed Delta tables, Azure CosmosDB, MongoDB and more.

As global data privacy regulations tighten, balancing user data protection with maximizing its business value is crucial.This presentation explores how integrating Databricks into our connected-vehicle data platform enhances both governance and business outcomes. We’ll highlight a case where migrating from EMR to Databricks improved deletion performance and cut costs by 99% with Delta Lake. This shift not only ensures compliance with data-privacy regulations but also maximizes the potential of connected-vehicle data. We are developing a platform that balances compliance with business value and sets a global standard for data usage, inviting partners to join us in building a secure, efficient mobility ecosystem.

Accelerating Model Development and Fine-Tuning on Databricks with TwelveLabs

Scaling large language models (LLMs) and multimodal architectures requires efficient data management and computational power. NVIDIA NeMo Framework Megatron-LM on Databricks is an open source solution that integrates GPU acceleration and advanced parallelism with Databricks Delta Lakehouse, streamlining workflows for pre-training and fine-tuning models at scale. This session highlights context parallelism, a unique NeMo capability for parallelizing over sequence lengths, making it ideal for video datasets with large embeddings. Through the case study of TwelveLabs’ Pegasus-1 model, learn how NeMo empowers scalable multimodal AI development, from text to video processing, setting a new standard for LLM workflows.

Let's Save Tons of Money With Cloud-Native Data Ingestion!

Delta Lake is a fantastic technology for quickly querying massive data sets, but first you need those massive data sets! In this session we will dive into the cloud-native architecture Scribd has adopted to ingest data from AWS Aurora, SQS, Kinesis Data Firehose and more. By using off-the-shelf open source tools like kafka-delta-ingest, oxbow and Airbyte, Scribd has redefined its ingestion architecture to be more event-driven, reliable, and most importantly: cheaper. No jobs needed! Attendees will learn how to use third-party tools in concert with a Databricks and Unity Catalog environment to provide a highly efficient and available data platform. This architecture will be presented in the context of AWS but can be adapted for Azure, Google Cloud Platform or even on-premise environments.

Spark 4.0 and Delta 4.0 For Streaming Data

Real-time data is one of the most important datasets for any Data and AI Platform across any industry. Spark 4.0 and Delta 4.0 include new features that make ingestion and querying of real-time data better than ever before. Features such as: Python custom data sources for simple ingestion of streaming and batch time series data sources using Spark Variant types for managing variable data types and json payloads that are common in the real time domain Delta liquid clustering for simple data clustering without the overhead or complexity of partitioning In this presentation you will learn how data teams can leverage these latest features to build industry-leading, real-time data products using Spark and Delta and includes real world examples and metrics of the improvements they make in performance and processing of data in the real time space.

Unlocking the Future of Dairy Farming: Leveraging Data Marketplaces at Lely

Lely, a Dutch company specializing in dairy farming robotics, helps farmers with advanced solutions for milking, feeding and cleaning. This session explores Lely’s implementation of an Internal Data Marketplace, built around Databricks' Private Exchange Marketplace. The marketplace serves as a central hub for data teams and business users, offering seamless access to data, analytics and dashboards. Powered by Delta Sharing, it enables secure, private listing of data products across business domains, including notebooks, views, models and functions. This session covers the pros and cons of this approach, best practices for setting up a data marketplace and its impact on Lely’s operations. Real-world examples and insights will showcase the potential of integrating data-driven solutions into dairy farming. Join us to discover how data innovation drives the future of dairy farming through Lely’s experience.