The journey from startup to billion-dollar enterprise requires more than just a great product—it demands strategic alignment between sales and marketing. How do you identify your ideal customer profile when you're just starting out? What data signals help you find the twins of your successful early adopters? With AI now automating everything from competitive analysis to content creation, the traditional boundaries between departments are blurring. But what personality traits should you look for when building teams that can scale with your growth? And how do you ensure your data strategy supports rather than hinders your AI ambitions in this rapidly evolving landscape? Denise Persson is CMO at Snowflake and has 20 years of technology marketing experience at high-growth companies. Prior to joining Snowflake, she served as CMO for Apigee, an API platform company that went public in 2015 and Google acquired in 2016. She began her career at collaboration software company Genesys, where she built and led a global marketing organization. Denise also helped lead Genesys through its expansion to become a successful IPO and acquired company. Denise holds a BA in Business Administration and Economics from Stockholm University, and holds an MBA from Georgetown University. Chris Degnan is the former CRO at Snowflake and has over 15 years of enterprise technology sales experience. Before working at Snowflake, Chris served as the AVP of the West at EMC, and prior to that as VP Western Region at Aveksa, where he helped grow the business 250% year-over-year. Before Aveksa, Chris spent eight years at EMC and managed a team responsible for 175 select accounts. Prior to EMC, Chris worked in enterprise sales at Informatica and Covalent Technologies (acquired by VMware). He holds a BA from the University of Delaware. In the episode, Richie, Denise, and Chris explore the journey to a billion-dollar ARR, the importance of customer obsession, aligning sales and marketing, leveraging data for decision-making, and the role of AI in scaling operations, and much more. Links Mentioned in the Show: SnowflakeSnowflake BUILDConnect with Denise and ChrisSnowflake is FREE on DataCamp this weekRelated Episode: Adding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at SnowflakeRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
talk-data.com
Topic
Marketing
22
tagged
Activity Trend
Top Events
The line between human work and AI capabilities is blurring in today's business environment. AI agents are now handling autonomous tasks across customer support, data management, and sales prospecting with increasing sophistication. But how do you effectively integrate these agents into your existing workflows? What's the right approach to training and evaluating AI team members? With data quality being the foundation of successful AI implementation, how can you ensure your systems have the unified context they need while maintaining proper governance and privacy controls? Karen Ng is the Head of Product at HubSpot, where she leads product strategy, design, and partnerships with the mission of helping millions of organizations grow better. Since joining in 2022, she has driven innovation across Smart CRM, Operations Hub, Breeze Intelligence, and the developer ecosystem, with a focus on unifying structured and unstructured data to make AI truly useful for businesses. Known for leading with clarity and “AI speed,” she pushes HubSpot to stay ahead of disruption and empower customers to thrive. Previously, Karen held senior product leadership roles at Common Room, Google, and Microsoft. At Common Room, she built the product and data science teams from the ground up, while at Google she directed Android’s product frameworks like Jetpack and Jetpack Compose. During more than a decade at Microsoft, she helped shape the company’s .NET strategy and launched the Roslyn compiler platform. Recognized as a Product 50 Winner and recipient of the PM Award for Technical Strategist, she also advises and invests in high-growth technology companies. In the episode, Richie and Karen explore the evolving role of AI agents in sales, marketing, and support, the distinction between chatbots, co-pilots, and autonomous agents, the importance of data quality and context, the concept of hybrid teams, the future of AI-driven business processes, and much more. Links Mentioned in the Show: Hubspot Breeze AgentsConnect with KarenWebinar: Pricing & Monetizing Your AI Products with Sam Lee, VP of Pricing Strategy & Product Operations at HubSpotRelated Episode: Enterprise AI Agents with Jun Qian, VP of Generative AI Services at OracleRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Data science continues to evolve in the age of AI, but is it still the 'sexiest job of the 21st century'? While generative AI has transformed the landscape, it hasn't replaced data scientists—instead, it's created more demand for their skills. Data professionals now incorporate AI into their workflows to boost efficiency, analyze data faster, and communicate insights more effectively. But with these technological advances come questions: How should you adapt your skills to stay relevant? What's the right balance between traditional data science techniques and new AI capabilities? And as roles like analytics engineer and machine learning engineer emerge, how do you position yourself for success in this rapidly changing field? Dawn Choo is the Co-Founder of Interview Master, a platform designed to streamline technical interview preparation. With a foundation in data science, financial analysis, and product strategy, she brings a cross-disciplinary lens to building data-driven tools that improve hiring outcomes. Her career spans roles at leading tech firms, including ClassDojo, Patreon, and Instagram, where she delivered insights to support product development and user engagement. Earlier, Dawn held analytical and engineering positions at Amazon and Bank of America, focusing on business intelligence, financial modeling, and risk analysis. She began her career at Facebook as a marketing analyst and continues to be a visible figure in the data science community—offering practical guidance to job seekers navigating technical interviews and career transitions. In the episode, Richie and Dawn explore the evolving role of data scientists in the age of AI, the impact of generative AI on workflows, the importance of foundational skills, and the nuances of the hiring process in data science. They also discuss the integration of AI in products and the future of personalized AI models, and much more. Links Mentioned in the Show: Interview MasterConnect with DawnDawn’s Newsletter: Ask Data DawnGet Certified: AI Engineer for Data Scientists Associate CertificationRelated Episode: How To Get Hired As A Data Or AI Engineer with Deepak Goyal, CEO & Founder at Azurelib AcademyRewatch RADAR AI New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Retrieval Augmented Generation (RAG) continues to be a foundational approach in AI despite claims of its demise. While some marketing narratives suggest RAG is being replaced by fine-tuning or long context windows, these technologies are actually complementary rather than competitive. But how do you build a truly effective RAG system that delivers accurate results in high-stakes environments? What separates a basic RAG implementation from an enterprise-grade solution that can handle complex queries across disparate data sources? And with the rise of AI agents, how will RAG evolve to support more dynamic reasoning capabilities? Douwe Kiela is the CEO and co-founder of Contextual AI, a company at the forefront of next-generation language model development. He also serves as an Adjunct Professor in Symbolic Systems at Stanford University, where he contributes to advancing the theoretical and practical understanding of AI systems. Before founding Contextual AI, Douwe was the Head of Research at Hugging Face, where he led groundbreaking efforts in natural language processing and machine learning. Prior to that, he was a Research Scientist and Research Lead at Meta’s FAIR (Fundamental AI Research) team, where he played a pivotal role in developing Retrieval-Augmented Generation (RAG)—a paradigm-shifting innovation in AI that combines retrieval systems with generative models for more grounded and contextually aware responses. In the episode, Richie and Douwe explore the misconceptions around the death of Retrieval Augmented Generation (RAG), the evolution to RAG 2.0, its applications in high-stakes industries, the importance of metadata and entitlements in data governance, the potential of agentic systems in enterprise settings, and much more. Links Mentioned in the Show: Contextual AIConnect with DouweCourse: Retrieval Augmented Generation (RAG) with LangChainRelated Episode: High Performance Generative AI Applications with Ram Sriharsha, CTO at PineconeRegister for RADAR AI - June 26 New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
AI maturity isn't achieved through technology alone—it requires organizational alignment, cultural readiness, and strategic implementation. Companies across industries are working to move beyond experimental AI use toward systematic integration that delivers measurable business value. How do you assess where your organization stands on the AI maturity spectrum? What frameworks can help prioritize your efforts? Eryn Peters, Co-founder & co-creator at AI Maturity Index, is a future of work evangelist. She is the co-creator of a tool for assessing AI maturity, and regularly advises companies on how to assess and improve their AI maturity. Eryn is also the Editor of the Weekly Workforce newsletter and the Principal at the Startup Consortium consultancy. Previously, she was the Global Director of the Association for the Future of Work, and VP of Marketing at Andela. Iwo Szapar is a serial entrepreneur with a passion for creating impactful solutions that enable people to work smarter, not harder. He is the co-founder of several innovative initiatives, including Remote-how, Remote-First Institute, AI-Mentor, and the Saudi AI Leadership Forum. Throughout his career, Iwo has helped transform how over 3,000 companies—including Microsoft, Walmart, and ING Bank—approach the future of work. In the episode, Richie, Eryn, and Iwo explore AI maturity in organizations, the balance between top-down and bottom-up AI adoption, the relationship between data and AI maturity, the importance of change management, practical steps for AI implementation, and much more. Links Mentioned in the Show: AI Maturity IndexEryn’s WebsiteIwo’s Book: Remote Work Is The WayConnect with Eryn and IwoState of Data & AI Literacy Report 2025Eryn’s previous webinar: Assessing Your Organization's AI MaturityRelated Episode: Scaling Responsible AI Literacy with Uthman Ali, Global Head of Responsible AI at BPRewatch sessions from RADAR: Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
The explosion of content in market research has created a paradox - more information but less time to consume it. Companies are now turning to AI chatbots to solve this problem, transforming how professionals interact with research data. Instead of expecting teams to read everything, these tools allow users to extract precisely what they need when they need it. This approach is proving not just more efficient but actually increases engagement with underlying content. How might your organization benefit from more targeted access to insights? What valuable information might be buried in your existing research that AI could help surface? With over 30 years of experience in marketing, media, and technology, Dan Coates is the President and co-founder of YPulse, the leading authority on Gen Z and Millennials. YPulse helps brands like Apple, Netflix, and Xbox understand and communicate with consumers aged 13–39, using data and insights from over 400,000 interviews conducted annually across seven countries. Prior to founding YPulse, Dan co-founded SurveyU, an online community and insights platform targeting youth, which merged with YPulse in 2009. He also led the introduction of Globalpark’s SAAS platform into the North American market, until its acquisition by QuestBack in 2011. In addition, Dan has held senior roles at Polimetrix, SPSS, PlanetFeedback, and Burke, where he developed cutting-edge practices and products for online marketing insights and transitioned several ventures from early stages to high-value acquisitions. In the episode, Richie and Dan explore the creation of an AI chatbot for market research, addressing customer engagement challenges, the integration of AI in content consumption, the impact of AI on business strategies, and the future of AI in market research, and much more. Links Mentioned in the Show: YPulseConnect with DanHaystack by DeepsetUnmanaged: Master the Magic of Creating Empowered and Happy Organizations by Jack SkeelsSkill Track: AI FundamentalsRelated Episode: Can You Use AI-Driven Pricing Ethically? with Jose Mendoza, Academic Director & Clinical Associate Professor at NYURewatch sessions from RADAR: Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Optimization and decision intelligence are reshaping industries, from logistics to finance. But what does this mean for professionals navigating daily challenges? Whether you're scheduling employees or managing power grids, finding the optimal solution can mean the difference between success and failure. How do you leverage optimization to make smarter, data-driven decisions? And how do you ensure these solutions are embraced by your team? Join us as we delve into the practical applications of optimization in the workplace. Duke Perrucci is the CEO at Gurobi Optimization. Prior to being appointed CEO, Duke served as CRO and COO since 2018. Perrucci has over 25 years of experience in sales, marketing, and analytics roles. Before joining Gurobi, he served at Cambridge Analytica, FocusVision, and Unilever. He also spent nine years with Information Resources, Inc., where he worked across the entire PepsiCo enterprise. Dr. Ed Klotz is a Senior Mathematical Optimization Specialist at Gurobi Optimization. Klotz has over 30 years of experience in the mathematical optimization software industry. He is a technical expert who has helped customers solve some of the world’s most challenging mathematical optimization problems. Dr. Klotz works closely with Gurobi's customers to support them in implementing and utilizing mathematical optimization in their organizations. He also interacts heavily with the R&D team based on his experiences with the customers. In the episode, Richie, Duke, and Ed explore decision intelligence, optimization in various industries, the synergy between optimization and machine learning, overcoming challenges in model building, the role of large language models in democratizing optimization, and much more. Links Mentioned in the Show: Gurobi OptimizationConnect with Duke and EdSkill Track: Artificial Intelligence (AI) LeadershipRelated Episode: Making Better Decisions using Data & AI with Cassie Kozyrkov, Google's First Chief Decision ScientistSign up to RADAR: Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Thought leadership is more than just a buzzword—it's a strategic tool that can significantly influence business decisions and relationships. But what makes thought leadership effective? How do you ensure your insights are not only heard but also trusted and acted upon? What role does generative AI play in enhancing the storytelling process, and how can it be leveraged to create compelling narratives that resonate with your audience? Cindy Anderson is the Chief Marketing Officer/Global Lead for Engagement & Eminence at the IBM Institute for Business Value (IBV). She has co-authored research reports, published numerous articles, and delivered presentations on thought leadership, diversity, strategy implementation, project management, and technology to global audiences. She oversees a team of 30 editors, designers, and social media/email marketers. She is a founding board member of the Global Thought Leadership Institute at APQC, a new association that advances the practice of thought leadership. Anthony Marshall is the Chair of the Board of Advisors for The Global Thought Leadership Institute at APQC and the Senior Research Director of thought leadership at the IBM Institute for Business Value (IBV), leading the top-rated thought leadership and analysis program. He oversees a global team of 60 technology and industry experts, statisticians, economists, and analysts. Anthony conducts original thought leadership and has authored dozens of refereed articles and studies on topics including generative AI, innovation, digital and business transformation and ecosystems, open collaboration and skills. In the episode, Richie, Cindy, and Anthony explore the framework for thought leadership storytelling, the role of generative AI in thought leadership, the ROI of thought leadership, building trust and quality in research, and much more. Links Mentioned in the Show: The ROI of Thought Leadership book by Cindy and AnthonyAPQCConnect with Cindy and AnthonySkill Track: Artificial Intelligence (AI) LeadershipRelated Episode: How Generative AI is Changing Leadership with Christie Smith, Founder of the Humanity Institute and Kelly Monahan, Managing Director, Research InstituteSign up to RADAR: Skills Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Personalization is more than a buzzword—it's a powerful tool for businesses to connect with customers on a deeper level. As data and AI technologies evolve, the ability to deliver personalized experiences becomes more accessible. But what does this mean for professionals tasked with implementing these strategies? How do you ensure that personalization efforts are both effective and respectful of customer privacy? David Edelman is a Digital and Marketing Transformation Executive Advisor, working with executives on digital and marketing transformation. He has been working in marketing and personalization since the '80s. In addition to his consultancy business, David is an Executive Teaching Fellow at Harvard Business School and a board member for several organizations. Previously, David was Chief Marketing Officer at Aetna, and a Partner at McKinsey. Forbes has repeatedly named him one of the Top 20 Most Influential Voices in Marketing, and Ad Age has named him a Top 20 Chief Marketing and Technology Officer. He is a co-author of "Personalized: Customer Strategy in the Age of AI". In this episode, Richie and David explore the power of personalization in customer experiences, the importance of understanding customer data, strategies for effective personalization, the role of AI in enhancing customer interactions, and much more. Links Mentioned in the Show: Personalized: Customer Strategy in the Age of AIConnect with DavidSkill Track: Artificial Intelligence (AI) LeadershipRelated Episode: Can You Use AI-Driven Pricing Ethically? with Jose Mendoza, Academic Director & Clinical Associate Professor at NYURewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. Edge computing is poised to transform industries by bringing computation and data storage closer to the source of data generation. This shift unlocks new types of value creation with data & AI and allows for a privacy-first and deeply personalized use of AI on our devices. What will the edge computing transition look like? How do you ensure applications are edge-ready, and what is the role of AI in the transition? Derek Collison is the founder and CEO at Synadia. He is an industry veteran, entrepreneur and pioneer in large-scale distributed systems and cloud computing. Derek founded Synadia Communications and Apcera, and has held executive positions at Google, VMware, and TIBCO Software. He is also an active angel investor and a technology futurist around Artificial Intelligence, Machine Learning, IOT and Cloud Computing. Justyna Bak is VP of Marketing at Synadia. Justyna is a versatile executive bridging Marketing, Sales and Product, a spark-plug for innovation at startups and Fortune 100 and a tech expert in Data Analytics and AI, AppDev and Networking. She is an astute influencer, panelist and presenter (Google, HBR) and a respected leader in Silicon Valley and Europe. In the episode, Richie, Derek, and Justyna explore the transition from cloud to edge computing, the benefits of reduced latency, real-time decision-making in industries like manufacturing and retail, the role of AI at the edge, and the future of edge-native applications, and much more. Links Mentioned in the Show: SynadiaConnect with Derek and JustynaCourse: Understanding Cloud ComputingRelated Episode: The Database is the Operating System with Mike Stonebraker, CTO & Co-Founder At DBOSRewatch sessions from RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here. Understanding where the data you use comes from, how to use it responsibly, and how to maximize its value has become essential. But as data sources multiply, so do the complexities around data privacy, customization, and ownership. How can companies capture and leverage the right data to create meaningful customer experiences while respecting privacy? And as data drives more personalized interactions, what steps can businesses take to protect sensitive information and navigate the increasingly complex regulatory picture? Jonathan Bloch is CEO at Exchange Data International (EDI) and a seasoned businessman with 40 years experience in information provision. He started work in the newsletter industry and ran the US subsidiary of a UK public company before joining its main board as head of its publishing division. He has been a director and/or chair of several companies and is currently a non executive director of an FCA registered investment bank. In 1994 he founded Exchange Data International (EDI) a London based financial data provider. EDI now has over 450 clients across three continents and is based in the UK, USA, India and Morocco employing 500 people. Scott Voigt is CEO and co-founder at Fullstory. Scott has enjoyed helping early-stage software businesses grow since the mid 90s, when he helped launch and take public nFront—one of the world's first Internet banking service providers. Prior to co-founding Fullstory, Voigt led marketing at Silverpop before the company was acquired by IBM. Previously, he worked at Noro-Moseley Partners, the Southeast's largest Venture firm, and also served as COO at Innuvo, which was acquired by Google. Scott teamed up with two former Innuvo colleagues, and the group developed the earliest iterations of Fullstory to understand how an existing product was performing. It was quickly apparent that this new platform provided the greatest value—and the rest is history. In the episode, Richie, Jonathan and Scott explore first-party vs third-party data, protecting corporate data, behavioral data, personalization, data sourcing strategies, platforms for storage and sourcing, data privacy, synthetic data, regulations and compliance, the future of data collection and storage, and much more. Links Mentioned in the Show: FullstoryExchange Data InternationalConnect with Jonathan and ScottCourse: Understanding GDPRRelated Episode: How Data and AI are Changing Data Management with Jamie Lerner, CEO, President, and Chairman at QuantumSign up to RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile...
As AI continually changes how businesses operate, new questions emerge around ethics and privacy. Nowadays, algorithms can set prices and personalize offers, but how do companies ensure they’re doing this responsibly? What does it mean to be transparent with customers about data use, and how can businesses avoid unintended bias? Balancing innovation with trust is key, but achieving this balance isn’t always straightforward. Dr. Jose Mendoza is Academic Director and Clinical Associate Professor in Integrated Marketing at NYU, and was formerly an Associate Professor of Practice at The University of Arizona in Tucson, Arizona. His focus is on consumer pricing, digital retailing, intelligent retail stores, neuromarketing, big data, artificial intelligence, and machine learning. Previously, he taught marketing courses at Sacred Heart University and Western Michigan University. He is also an experienced senior global marketing executive with over 18 years of experience in global marketing alone and a career as an Engineer in Information Sciences. Dr. Mendoza is also a Doctoral Researcher in Strategic and Global pricing, Consumer Behavior, and Pricing Research methodologies. He had international roles in Latin America, Europe, and the USA with scope in over 50 countries. In the episode, Richie and Jose explore AI-driven pricing, consumer perceptions and ethical pricing, the complexity of dynamic pricing models, explainable AI, data privacy and customer trust, legal and ethical guardrails, innovations in dynamic pricing and much more. Links Mentioned in the Show: NYUConnect with JoseAmazon Dynamic Pricing Strategy in 2024Course: AI EthicsRelated Episode: The Future of Marketing Analytics with Cory Munchbach, CEO at BlueConicSign up to RADAR: Forward Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Businesses are collecting more data than ever before. But is bigger always better? Many companies are starting to question whether massive datasets and complex infrastructure are truly delivering results or just adding unnecessary costs and complications. How can you make sure your data strategy is aligned with your actual needs? What if focusing on smaller, more manageable datasets could improve your efficiency and save resources, all while delivering the same insights? Ryan Boyd is the Co-Founder & VP, Marketing + DevRel at MotherDuck. Ryan started his career as a software engineer, but since has led DevRel teams for 15+ years at Google, Databricks and Neo4j, where he developed and executed numerous marketing and DevRel programs. Prior to MotherDuck, Ryan worked at Databricks and focussed the team on building an online community during the pandemic, helping to organize the content and experience for an online Data + AI Summit, establishing a regular cadence of video and blog content, launching the Databricks Beacons ambassador program, improving the time to an “aha” moment in the online trial and launching a University Alliance program to help professors teach the latest in data science, machine learning and data engineering. In the episode, Richie and Ryan explore data growth and computation, the data 1%, the small data movement, data storage and usage, the shift to local and hybrid computing, modern data tools, the challenges of big data, transactional vs analytical databases, SQL language enhancements, simple and ergonomic data solutions and much more. Links Mentioned in the Show: MotherDuckThe Small Data ManifestoConnect with RyanSmall DataSF conferenceRelated Episode: Effective Data Engineering with Liya Aizenberg, Director of Data Engineering at AwayRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
One of the big use cases of generative AI is having small applications to solve specific tasks. These are known as AI agents or AI assistants. Since they’re small and narrow in scope, you probably want to create and use lots of them, which means you need to be able to create them cheaply and easily. I’m curious as to how you go about doing this from an organizational point of view. Who needs to be involved? What’s the workflow and what technology do you need? Dmitry Shapiro is the CEO of MindStudio. He was previously the CTO at MySpace and a product manager at Google. Dmitry is also a serial entrepreneur, having founded the web-app development platform Koji, acquired by Linktree, and Veoh Networks, an early YouTube competitor. He has extensive experience in building and managing engineering, product, and AI teams. In the episode, Richie and Dmitry explore generative AI applications, AI in SaaS, approaches to AI implementation, selecting processes for automation, changes in sales and marketing roles, MindStudio, AI governance and privacy concerns, cost management, the limitations and future of AI assistants, and much more. Links Mentioned in the Show: MindStudioConnect with Dmitry[Webinar] Dmitry at RADAR: From Learning to Earning: Navigating the AI Job LandscapeRelated Episode: Designing AI Applications with Robb Wilson, Co-Founder & CEO at Onereach.aiRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business
By now, many of us are convinced that generative AI chatbots like ChatGPT are useful at work. However, many executives are rightfully worried about the risks from having business and customer conversations recorded by AI chatbot platforms. Some privacy and security-conscious organizations are going so far as to block these AI platforms completely. For organizations such as EY, a company that derives value from its intellectual property, leaders need to strike a balance between privacy and productivity. John Thompson runs the department for the ideation, design, development, implementation, & use of innovative Generative AI, Traditional AI, & Causal AI solutions, across all of EY's service lines, operating functions, geographies, & for EY's clients. His team has built the world's largest, secure, private LLM-based chat environment. John also runs the Marketing Sciences consultancy, advising clients on monetization strategies for data. He is the author of four books on data, including "Data for All' and "Causal Artificial Intelligence". Previously, he was the Global Head of AI at CSL Behring, an Adjunct Professor at Lake Forest Graduate School of Management, and an Executive Partner at Gartner. In the episode, Richie and John explore the adoption of GenAI at EY, data privacy and security, GenAI use cases and productivity improvements, GenAI for decision making, causal AI and synthetic data, industry trends and predictions and much more. Links Mentioned in the Show: Azure OpenAICausality by Judea Pearl[Course] AI EthicsRelated Episode: Data & AI at Tesco with Venkat Raghavan, Director of Analytics and Science at TescoCatch John talking about AI Maturity this SeptemberRewatch sessions from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business
Speedily adopting new technologies can give your business a competitive advantage, but with so much happening in the world of generative AI, it's difficult to know what to adopt. In this episode, Richie chats to two venture capitalists to get their view on the global AI landscape, where we are in the AI hype cycle, and how to adopt AI tech. Beyond this, we explore Rocketship.vc's use of data and algorithms to make investment decisions in early-stage startups. If our previous episode’s deep dive into 2024’s data & AI trends with VC Tom Tunguz got you excited about how investors are looking at the market at the moment, then this episode is sure to do the same. This time, we have twice the insight, thanks to our two guests. Madhu Shalini Iyer is a Managing Partner at Rocketship.vc, a Silicon Valley based fund investing globally. She was the Chief Data Officer of Gojek and helped grow the business into a $10 billion unicorn. In addition to being a board member, she started the Singapore office and played an active role in the strategy, new business development, and ‘data as a competitive advantage’. Prior to Gojek, Madhu was part of the founding team of Intuit’s Quickbooks Lending Platform. As the data science leader at Intuit, Madhu helped grow the platform to $300 million and holds 2 patents in the areas of user data augmented algorithms for financial inclusion. Madhu was also the Chief Data Officer for Ethoslending. There she built the underwriting platform and was responsible for all b2c revenue, resulting in $65 million gross market value per month. Madhu was further responsible for building and running the marketing team. Prior, Madhu was a partner at a $150m private equity fund, Stem Financial, in Hong Kong. She started her career as a senior data scientist with a leading think tank in Menlo Park, CA. Sailesh Ramakrishnan is also a Managing Partner at Rocketship.vc. Prior to Rocketship.vc, Sailesh was CTO and co-founder of LocBox (acquired by Square), a startup focussed on marketing for local businesses. Sailesh worked with Anand and Venky at their previous startup Kosmix, and continued on to Walmart as a Director of Engineering at @WalmartLabs. Before jumping into the startup world, Sailesh worked as a Computer Scientist at NASA Ames Research Center. Sailesh earned his Bachelors degree in Civil Engineering from IIT Madras, his Masters degree in Construction Management from Virginia Tech and another Master degree in Intelligent Systems from University of Pittsburgh. He was a Ph.D. candidate in Artificial Intelligence at the University of Michigan. In the episode, Richie, Madhu and Sailesh explore the generative AI revolution, categorizing generative AI tools, the impact of genAI across industries, investment philosophy and data-driven decision-making, the challenges and opportunities when investing in AI, future trends and predictions, regulatory and ethical considerations of AI, and much more. Links Mentioned in the Show: Rocketship.vc[Course] Implementing AI Solutions in BusinessRelated Episode: Inside Algorithmic Trading with Anthony Markham, Vice President, Quantitative Developer at Deutsche BankSign up to RADAR: AI Edition New to DataCamp? Learn on the go using thea href="https://www.datacamp.com/mobile" rel="noopener noreferrer"...
We’ve heard so much about the value and capabilities of generative AI over the past year, and we’ve all become accustomed to the chat interfaces of our preferred models. One of the main concerns many of us have had has been privacy. Is OpenAI keeping the data and information I give to ChatGPT secure? One of the touted solutions to this problem is running LLMs locally on your own machine, but with the hardware cost that comes with it, running LLMs locally has not been possible for many of us. That might now be starting to change. Nuri Canyaka is VP of AI Marketing at Intel. Prior to Intel, Nuri spent 16 years at Microsoft, starting out as a Technical Evangelist, and leaving the organization as the Senior Director of Product Marketing. He ran the GTM team that helped generate adoption of GPT in Microsoft Azure products. La Tiffaney Santucci is Intel’s AI Marketing Director, specializing in their Edge and Client products. La Tiffaney has spent over a decade at Intel, focussing on partnerships with Dell, Google Amazon and Microsoft. In the episode, Richie, Nuri and La Tiffaney explore AI’s impact on marketing analytics, the adoptions of AI in the enterprise, how AI is being integrated into existing products, the workflow for implementing AI into business processes and the challenges that come with it, the importance of edge AI for instant decision-making in uses-cases like self-driving cars, the emergence of AI engineering as a distinct field of work, the democratization of AI, what the state of AGI might look like in the near future and much more. About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: Intel OpenVINO™ toolkitIntel Developer Clouds for Accelerated ComputingAWS Re:Invent[Course] Implementing AI Solutions in BusinessRelated Episode: Intel CTO Steve Orrin on How Governments Can Navigate the Data & AI RevolutionSign up to a href="https://www.datacamp.com/radar-analytics-edition"...
Snowflake has been foundational in the data space for years. In the mid-2010s, the platform was a major driver of moving data to the cloud. More recently, it's become apparent that combining data and AI in the cloud is key to accelerating innovation. Snowflake has been rapidly adding AI features to provide value to the modern data stack, but what’s really been going on under the hood? At the time of recording, Sridhar Ramaswamy was the SVP of AI at Snowflake, being appointed CEO at Snowflake in February 2024. Sridhar was formerly Co-Founder of Neeva, acquired in 2023 by Snowflake. Before founding Neeva, Ramaswamy oversaw Google's advertising products, including search, display, video advertising, analytics, shopping, payments, and travel. He joined Google in 2003 and was part of the growth of AdWords and Google's overall advertising business. He spent more than 15 years at Google, where he started as a software engineer and rose to SVP of Ads & Commerce. In the episode, Richie and Sridhar explore Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, how NLP and AI have impacted enterprise business operations as well as new applications of AI in an enterprise environment, the challenges of enterprise search, the importance of data quality, management and the role of semantic layers in the effective use of AI, a look into Snowflakes products including Snowpilot and Cortex, the collaboration required for successful data and AI projects, advice for organizations looking to improve their data management and much more. About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: SnowflakeSnowflake acquires Neeva to accelerate search in the Data Cloud through generative AIUse AI in Seconds with Snowflake Cortex[Course] Introduction to SnowflakeRelated Episode: Why AI will Change Everything—with Former Snowflake CEO, Bob MugliaSign up to a...
Databricks started out as a platform for using Spark, a big data analytics engine, but it's grown a lot since then. Databricks now allows users to leverage their data and AI projects in the same place, ensuring ease of use and consistency across operations. The Databricks platform is converging on the idea of data intelligence, but what does this mean, how will it help data teams and organizations, and where does AI fit in the picture? Ari is Databricks’ Head of Evangelism and "The Real Moneyball Guy" - the popular movie was partly based on his analytical innovations in Major League Baseball. He is a leading influencer in analytics, artificial intelligence, data science, and high-growth business innovation. Ari was previously the Global AI Evangelist at DataRobot, Nielsen’s regional VP of Analytics, Caltech Alumni of the Decade, President Emeritus of the worldwide Independent Oracle Users Group, on Intel’s AI Board of Advisors, Sports Illustrated Top Ten GM Candidate, an IBM Watson Celebrity Data Scientist, and on the Crain’s Chicago 40 Under 40. He's also written 5 books on analytics, databases, and baseball. Robin is the Field CTO at Databricks. She has consulted with hundreds of organizations on data strategy, data culture, and building diverse data teams. Robin has had an eclectic career path in technical and business functions with more than two decades in tech companies, including Microsoft and Databricks. She also has achieved multiple academic accomplishments from her juris doctorate to a masters in law to engineering leadership. From her first technical role as an entry-level consumer support engineer to her current role in the C-Suite, Robin supports creating an inclusive workplace and is the current co-chair of Women in Data Safety Committee. She was also recognized in 2023 as a Top 20 Women in Data and Tech, as well as DataIQ 100 Most Influential People in Data. In the episode, Richie, Ari, and Robin explore Databricks, the application of generative AI in improving services operations and providing data insights, data intelligence, and lakehouse technology, the wide-ranging applications of generative AI, how AI tools are changing data democratization, the challenges of data governance and management and how tools like Databricks can help, how jobs in data and AI are changing and much more. About the AI and the Modern Data Stack DataFramed Series This week we’re releasing 4 episodes focused on how AI is changing the modern data stack and the analytics profession at large. The modern data stack is often an ambiguous and all-encompassing term, so we intentionally wanted to cover the impact of AI on the modern data stack from different angles. Here’s what you can expect: Why the Future of AI in Data will be Weird with Benn Stancil, CTO at Mode & Field CTO at ThoughtSpot — Covering how AI will change analytics workflows and tools How Databricks is Transforming Data Warehousing and AI with Ari Kaplan, Head Evangelist & Robin Sutara, Field CTO at Databricks — Covering Databricks, data intelligence and how AI tools are changing data democratizationAdding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at Snowflake — Covering Snowflake and its uses, how generative AI is changing the attitudes of leaders towards data, and how to improve your data managementAccelerating AI Workflows with Nuri Cankaya, VP of AI Marketing & La Tiffaney Santucci, AI Marketing Director at Intel — Covering AI’s impact on marketing analytics, how AI is being integrated into existing products, and the democratization of AI Links Mentioned in the Show: DatabricksDelta Lakea href="https://mlflow.org/" rel="noopener...
Cookies were invented to help online shoppers, simply as an identifier so that online carts weren’t lost to the ether. Marketers quickly saw the power of using cookies for more than just maintaining session states, and moved to use them as part of their targeted advertising. Before we knew it, our online habits were being tracked, without our clear consent. The unregulated cookie-boom lasted until 2018 with the advent of GDPR and the CCPA. Since then marketers have been evolving their practices, looking for alternatives to cookie-tracking that will perform comparatively, and with the cookie being phased out in 2024, technologies like fingerprinting and new privacy-centric marketing strategies will play a huge role in how products meet users in the future. Cory Munchbach has spent her career on the cutting edge of marketing technology and brings years working with Fortune 500 clients from various industries to BlueConic. Prior to BluConic, she was an analyst at Forrester Research where she covered business and consumer technology trends and the fast-moving marketing tech landscape. A sought-after speaker and industry voice, Cory’s work has been featured in Financial Times, Forbes, Raconteur, AdExchanger, The Drum, Venture Beat, Wired, AdAge, and Adweek. A life-long Bostonian, Cory has a bachelor’s degree in political science from Boston College and spends a considerable amount of her non-work hours on various volunteer and philanthropic initiatives in the greater Boston community. In the episode, Richie and Cory cover successful marketing strategies and their use of data, the types of data used in marketing, how data is leveraged during different stages of the customer life cycle, the impact of privacy laws on data collection and marketing strategies, tips on how to use customer data while protecting privacy and adhering to regulations, the importance of data skills in marketing, the future of marketing analytics and much more. Links Mentioned in the Show: BlueConicMattel CreationsGoogle: Prepare for third-party cookie restrictionsData Clean Rooms[Course] Marketing Analytics for Business