talk-data.com talk-data.com

Topic

Data Science

machine_learning statistics analytics

1516

tagged

Activity Trend

68 peak/qtr
2020-Q1 2026-Q1

Activities

1516 activities · Newest first

Loyalty schemes are a hallmark of established retailers—not only do they build consumer trust, they are intelligent and constantly evolving, and Tesco’s Clubcard is the UK’s favorite retail loyalty program. The effects of these discounts are far-reaching, especially for families who rely on getting the best deals to make the most of their money. As Tesco’s tagline goes, every little helps. In turn, the identification and specific details of discounted products can have a profound impact on how consumers view the largest supermarket retailer in the United Kingdom, as well as the operational costs and profits that shareholders are concerned with. How do data and AI inform these offers, what goes into the enterprise-scale analytics that keeps Tesco’s Clubcard the UK’s favorite? Venkat Raghavan is Director of Analytics and Science at Tesco. Venkat’s area of expertise is customer analytics, having been very heavily involved with the Tesco Clubcard loyalty program. Venkat also set up an analytics center of excellence to help break down data silos between teams. Previously, he was a Director of Analytics at Boston Consulting Group and Senior Director for Advanced Analytics & AI for Manthan and a Cross Industry Delivery Leader at Mu Sigma. In the episode, Richie and Venkat explore Tesco’s use of data, the introduction of the clubcard scheme, Tesco’s data-driven innovations in online food retail, understanding customer behavior through loyalty programs and in-app interactions, improving customer experience at Tesco, operating a cohesive data intelligence platform that leverages multiple data sources, communication between data and business teams, pricing and cost management, the challenges of data science at scale, the future of data and much more.  Links Mentioned in the Show: Tesco ClubcardMcKinsey: State of Grocery Europe 2024[Course] Data Science for BusinessRelated Episode: Scaling Enterprise Analytics with Libby Duane Adams, Chief Advocacy Officer and Co-Founder of AlteryxSign up to RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business

Welcome Address for the Data Engineering Open Forum 2024

Max Schmeiser (Vice President of Studio and Content Data Science & Engineering) extends a warm welcome to all attendees, marking the beginning of our inaugural Data Engineering Open Forum.

If you are interested in attending a future Data Engineering Open Forum, we highly recommend you join our Google Group (https://groups.google.com/g/data-engineering-open-forum) to stay tuned to event announcements.

AWS re:Inforce 2024 - Building a secure MLOps pipeline, featuring PathAI (APS302)

DevOps and MLOps are both software development strategies that focus on collaboration between developers, operations, and data science teams. In this session, learn how to build modern, secure MLOps using AWS services and tools for infrastructure and network isolation, data protection, authentication and authorization, detective controls, and compliance. Discover how AWS customer PathAI, a leading digital pathology and AI company, uses seamless DevOps and MLOps strategies to run their AISight intelligent image management system and embedded AI products to support anatomic pathology labs and biopharma partners globally.

Learn more about AWS re:Inforce at https://go.aws/reinforce.

Subscribe: More AWS videos: http://bit.ly/2O3zS75 More AWS events videos: http://bit.ly/316g9t4

ABOUT AWS Amazon Web Services (AWS) hosts events, both online and in-person, bringing the cloud computing community together to connect, collaborate, and learn from AWS experts.

AWS is the world's most comprehensive and broadly adopted cloud platform, offering over 200 fully featured services from data centers globally. Millions of customers—including the fastest-growing startups, largest enterprises, and leading government agencies—are using AWS to lower costs, become more agile, and innovate faster.

reInforce2024 #CloudSecurity #AWS #AmazonWebServices #CloudComputing

Para explorar técnicas poderosas de como transformar conjuntos de dados complexos em histórias envolventes e insights assertivos, direto de Barcelona, convidamos Letícia Pozza —  que teve experiência na implementação de iniciativas de análise de dados no Brasil e em pesquisas apoiadas pela Fundação Bill & Melinda Gates e atualmente, e CEO e Co-fundadora da Odd Studio.

Ela conta pra gente, sua experiência em adentrar em um mundo onde dados se convertem em narrativas para desvendar os mistérios da Visualização e Storytelling de Dados.

Neste episódio do Data Hackers — a maior comunidade de AI e Data Science do Brasil-, conheçam: Letícia Pozza — CEO & Co-founder na Odd Studio, que tem como intuito trazer métodos de design para a ciência de dados e auxiliar empresas na concepção e criação de produtos baseados em dados.

Lembrando que você pode encontrar todos os podcasts da comunidade Data Hackers no Spotify, iTunes, Google Podcast, Castbox e muitas outras plataformas. Caso queira, você também pode ouvir o episódio aqui no post mesmo!

Conheça nossa convidada:

Letícia Pozza — CEO & Co-founder na Odd Studio.

Nossa Bancada Data Hackers:

Monique Femme — Head of Community Management na Data Hackers Paulo Vasconcellos — Co-founder da Data Hackers e Principal Data Scientist na Hotmart. Gabriel Lages — Co-founder da Data Hackers e Data & Analytics Sr. Director na Hotmart.

Acesse as referências citadas neste episódio no Medium do Data Hackers .

Having a strong personal brand is one of the best things you can do to stand out from your competition in today's difficult job market.    In this episode, you'll learn why brand building should be at the top of your list, and more importantly, hear actionable tips that you can use to make progress right away.    We'll be sharing some of the best strategies, actionable advice, and personal anecdotes from two of the best personal brand builders in data, Kate Strachnyi and Kristen Kehrer.

You'll leave with a concrete path to building your brand and accelerating your career, starting today. What You'll Learn: Why personal brands matter more than ever in 2024 What a strong personal brand looks like How to start building your personal brand online   Register for free to be part of the next live session: https://bit.ly/3XB3A8b   About our guests: As the founder of DATAcated, Kate Strachnyi helps companies amplify their brand and expertise in artificial intelligence, machine learning, and data science. Kate is a content creator with over 200k followers across LinkedIn, YouTube, Instagram, and other platforms. She also runs a DATAcated Plus program with 25+ influencers that can be hired to 'make a spash' on social media.  As a marketing and branding expert, Kate has been recognized as a LinkedIn Top Voice in Data Science and Analytics for 2018 and 2019, and as a DataIQ USA100 for 2022. Kate is also the author of ColorWise: A Data Storyteller's Guide to the Intentional Use of Color.  https://www.datacated.com/brand-builder     Kristen Kehrer has been providing innovative & practical statistical modeling solutions in the utilities, healthcare, and eCommerce sectors since 2010. Alongside her professional accomplishments, she achieved recognition as a LinkedIn Top Voice in Data Science & Analytics in 2018. Kristen is also the founder of Data Moves Me, LLC, and has previously served as a faculty member and subject matter expert at the Emeritus Institute of Management and UC Berkeley Ext.

 Kristen lights up on stage and has spoken at conferences like ODSC, DataScienceGO, BI+Analytics Conference, Boye Conference, and Big Data LDN, etc.

She holds a Master of Science degree in Applied Statistics from Worcester Polytechnic Institute and a Bachelor of Science degree in Mathematics.

https://www.datamovesme.com/   Follow us on Socials: LinkedIn YouTube Instagram (Mavens of Data) Instagram (Maven Analytics) TikTok Facebook Medium X/Twitter

Databricks Certified Associate Developer for Apache Spark Using Python

This book serves as the ultimate preparation for aspiring Databricks Certified Associate Developers specializing in Apache Spark. Deep dive into Spark's components, its applications, and exam techniques to achieve certification and expand your practical skills in big data processing and real-time analytics using Python. What this Book will help me do Deeply understand Apache Spark's core architecture for building big data applications. Write optimized SQL queries and leverage Spark DataFrame API for efficient data manipulation. Apply advanced Spark functions, including UDFs, to solve complex data engineering tasks. Use Spark Streaming capabilities to implement real-time and near-real-time processing solutions. Get hands-on preparation for the certification exam with mock tests and practice questions. Author(s) Saba Shah is a seasoned data engineer with extensive experience working at Databricks and leading data science teams. With her in-depth knowledge of big data applications and Spark, she delivers clear, actionable insights in this book. Her approach emphasizes practical learning and real-world applications. Who is it for? This book is ideal for data professionals such as engineers and analysts aiming to achieve Databricks certification. It is particularly helpful for individuals with moderate Python proficiency who are keen to understand Spark from scratch. If you're transitioning into big data roles, this guide prepares you comprehensively.

Financial Data Science with SAS

Explore financial data science using SAS. Financial Data Science with SAS provides readers with a comprehensive explanation of the theoretical and practical implementation of the various types of analytical techniques and quantitative tools that are used in the financial services industry. This book shows readers how to implement data visualization, simulation, statistical predictive models, machine learning models, and financial optimizations using real-world examples in the SAS Analytics environment. Each chapter ends with practice exercises that include use case scenarios to allow readers to test their knowledge. Designed for university students and financial professionals interested in boosting their data science skills, Financial Data Science with SAS is an essential reference guide for understanding how data science is used in the financial services industry and for learning how to use SAS to solve complex business problems.

Wait, I’m talking to a head of data management at a tech company? Why!? Well, today I'm joined by Malcolm Hawker to get his perspective around data products and what he’s seeing out in the wild as Head of Data Management at Profisee. Why Malcolm? Malcolm was a former head of product in prior roles, and for several years, I’ve enjoyed Malcolm’s musings on LinkedIn about the value of a product-oriented approach to ML and analytics. We had a chance to meet at CDOIQ in 2023 as well and he went on my “need to do an episode” list! 

According to Malcom, empathy is the secret to addressing key UX questions that ensure adoption and business value. He also emphasizes the need for data experts to develop business skills so that they're seen as equals by their customers. During our chat, Malcolm stresses the benefits of a product- and customer-centric approach to data products and what data professionals can learn approaching problem solving with a product orientation. 

Highlights/ Skip to:

Malcolm’s definition of a data product (2:10) Understanding your customers’ needs is the first step toward quantifying the benefits of your data product (6:34) How product makers can gain access to users to build more successful products (11:36)  Answering the UX question to get past the adoption stage and provide business value (16:03) Data experts must develop business expertise if they want to be seen as equals by potential customers (20:07) What people really mean by “data culture" (23:02) Malcolm’s data product journey and his changing perspective (32:05) Using empathy to provide a better UX in design and data (39:24) Avoiding the death of data science by becoming more product-driven (46:23) Where the majority of data professionals currently land on their view of product management for data products (48:15)

Quotes from Today’s Episode “My definition of a data product is something that is built by a data and analytics team that solves a specific customer problem that the customer would otherwise be willing to pay for. That’s it.” - Malcolm Hawker (3:42) “You need to observe how your customer uses data to make better decisions, optimize a business process, or to mitigate business risk. You need to know how your customers operate at a very, very intimate level, arguably, as well as they know how their business processes operate.” - Malcolm Hawker (7:36)

“So, be a problem solver. Be collaborative. Be somebody who is eager to help make your customers’ lives easier. You hear "no" when people think that you’re a burden. You start to hear more “yeses” when people think that you are actually invested in helping make their lives easier.” - Malcolm Hawker (12:42)

“We [data professionals] put data on a pedestal. We develop this mindset that the data matters more—as much or maybe even more than the business processes, and that is not true. We would not exist if it were not for the business. Hard stop.” - Malcolm Hawker (17:07)

“I hate to say it, I think a lot of this data stuff should kind of feel invisible in that way, too. It’s like this invisible ally that you’re not thinking about the dashboard; you just access the information as part of your natural workflow when you need insights on making a decision, or a status check that you’re on track with whatever your goal was. You’re not really going out of mode.” - Brian O’Neill (24:59)

“But you know, data people are basically librarians. We want to put things into classifications that are logical and work forwards and backwards, right? And in the product world, sometimes they just don’t, where you can have something be a product and be a material to a subsequent product.” - Malcolm Hawker (37:57)

“So, the broader point here is just more of a mindset shift. And you know, maybe these things aren’t necessarily a bad thing, but how do we become a little more product- and customer-driven so that we avoid situations where everybody thinks what we’re doing is a time waster?” - Malcolm Hawker (48:00)

Links Profisee: https://profisee.com/  LinkedIn: https://www.linkedin.com/in/malhawker/  CDO Matters: https://profisee.com/cdo-matters-live-with-malcolm-hawker/

In the fast-paced work environments we are used to, the ability to quickly find and understand data is essential. Data professionals can often spend more time searching for data than analyzing it, which can hinder business progress. Innovations like data catalogs and automated lineage systems are transforming data management, making it easier to ensure data quality, trust, and compliance. By creating a strong metadata foundation and integrating these tools into existing workflows, organizations can enhance decision-making and operational efficiency. But how did this all come to be, who is driving better access and collaboration through data? Prukalpa Sankar is the Co-founder of Atlan. Atlan is a modern data collaboration workspace (like GitHub for engineering or Figma for design). By acting as a virtual hub for data assets ranging from tables and dashboards to models & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Slack, BI tools, data science tools and more. A pioneer in the space, Atlan was recognized by Gartner as a Cool Vendor in DataOps, as one of the top 3 companies globally. Prukalpa previously co-founded SocialCops, world leading data for good company (New York Times Global Visionary, World Economic Forum Tech Pioneer). SocialCops is behind landmark data projects including India’s National Data Platform and SDGs global monitoring in collaboration with the United Nations. She was awarded Economic Times Emerging Entrepreneur for the Year, Forbes 30u30, Fortune 40u40, Top 10 CNBC Young Business Women 2016, and a TED Speaker. In the episode, Richie and Prukalpa explore challenges within data discoverability, the inception of Atlan, the importance of a data catalog, personalization in data catalogs, data lineage, building data lineage, implementing data governance, human collaboration in data governance, skills for effective data governance, product design for diverse audiences, regulatory compliance, the future of data management and much more.  Links Mentioned in the Show: AtlanConnect with Prukalpa[Course] Artificial Intelligence (AI) StrategyRelated Episode: Adding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at SnowflakeSign up to RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business

Pandas Workout

Practice makes perfect pandas! Work out your pandas skills against dozens of real-world challenges, each carefully designed to build an intuitive knowledge of essential pandas tasks. In Pandas Workout you’ll learn how to: Clean your data for accurate analysis Work with rows and columns for retrieving and assigning data Handle indexes, including hierarchical indexes Read and write data with a number of common formats, such as CSV and JSON Process and manipulate textual data from within pandas Work with dates and times in pandas Perform aggregate calculations on selected subsets of data Produce attractive and useful visualizations that make your data come alive Pandas Workout hones your pandas skills to a professional-level through two hundred exercises, each designed to strengthen your pandas skills. You’ll test your abilities against common pandas challenges such as importing and exporting, data cleaning, visualization, and performance optimization. Each exercise utilizes a real-world scenario based on real-world data, from tracking the parking tickets in New York City, to working out which country makes the best wines. You’ll soon find your pandas skills becoming second nature—no more trips to StackOverflow for what is now a natural part of your skillset. About the Technology Python’s pandas library can massively reduce the time you spend analyzing, cleaning, exploring, and manipulating data. And the only path to pandas mastery is practice, practice, and, you guessed it, more practice. In this book, Python guru Reuven Lerner is your personal trainer and guide through over 200 exercises guaranteed to boost your pandas skills. About the Book Pandas Workout is a thoughtful collection of practice problems, challenges, and mini-projects designed to build your data analysis skills using Python and pandas. The workouts use realistic data from many sources: the New York taxi fleet, Olympic athletes, SAT scores, oil prices, and more. Each can be completed in ten minutes or less. You’ll explore pandas’ rich functionality for string and date/time handling, complex indexing, and visualization, along with practical tips for every stage of a data analysis project. What's Inside Clean data with less manual labor Retrieving and assigning data Process and manipulate text Calculations on selected data subsets About the Reader For Python programmers and data analysts. About the Author Reuven M. Lerner teaches Python and data science around the world and publishes the “Bamboo Weekly” newsletter. He is the author of Manning’s Python Workout (2020). Quotes A carefully crafted tour through the pandas library, jam-packed with wisdom that will help you become a better pandas user and a better data scientist. - Kevin Markham, Founder of Data School, Creator of pandas in 30 days Will help you apply pandas to real problems and push you to the next level. - Michael Driscoll, RFA Engineering, creator of Teach Me Python The explanations, paired with Reuven’s storytelling and personal tone, make the concepts simple. I’ll never get them wrong again! - Rodrigo Girão Serrão, Python developer and educator The definitive source! - Kiran Anantha, Amazon

The Ultimate Guide to Snowpark

The Ultimate Guide to Snowpark serves as a comprehensive resource to help you master the Snowflake Snowpark framework using Python. You'll learn how to manage data engineering, data science, and data applications in Snowpark, coupled with practical implementations and examples. By following this guide, you'll gain the skills needed to efficiently process and analyze data in the Snowflake Data Cloud. What this Book will help me do Master Snowpark with Python for data engineering, data science, and data application workloads. Develop and deploy robust data pipelines using Snowpark in Python. Design, implement, and produce machine learning models using Snowpark. Learn to monetize and operationalize Snowflake-native applications. Effectively adopt Snowpark in production for scalable, efficient data solutions. Author(s) Shankar Narayanan SGS and Vivekanandan SS are experienced professionals in data engineering and Snowflake technologies. Shankar has extensive experience in utilizing Snowflake Snowpark to manage and enhance data solutions. Vivekanandan brings expertise in the intersection of Python programming and cloud-based data processing. Together, their combined knowledge and approachable writing style make this book an invaluable resource to readers. Who is it for? This book is designed for data engineers, data scientists, developers, and seasoned data practitioners. Ideal candidates are those looking to expand their skills in implementing Snowpark solutions using Python. A prior understanding of SQL, Python programming, and familiarity with Snowflake is beneficial for readers to fully leverage the techniques presented.

Data Analysis and Related Applications 3

The book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis and related applications, arising from data science, operations research, engineering, machine learning or statistics. The chapters of this collaborative work represent a cross-section of current research interests in the above scientific areas. The collected material has been divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with appropriate applications. The published data analysis methodology includes the updated state-of-the-art rapidly developed theory and applications of data expansion, both of which go through outstanding changes nowadays. New approaches are expected to deliver and have been developed, including Artificial Intelligence.

This interview features Raja Iqbal, Founder and CEO of Data Science Dojo, engaging in a candid conversation with Bob van Luijt, Co-founder and CEO of Weaviate. Bob shares his journey, from early childhood and a fascination for tech to his entrepreneurial drive which eventually led to launching his own startup at a very young age. They also discuss the importance of standing out and continuously evolving and adapting in a highly competitive landscape, and the potential of AI in businesses.

But it's not all sunshine and robots. Bob and Raja also discuss the triumphs and tribulations of leading their own start-ups, fostering a culture that fuels sustainable growth, and the key decisions that can make or break a young company. They also explore how to impress investors and build their trust so that funding isn't a constant worry.

Packed with practical advice and valuable insights, this video is a must-watch for aspiring as well as seasoned AI entrepreneurs aiming to make their mark on the industry.

Send us a text Welcome to the cozy corner of the tech world where ones and zeros mingle with casual chit-chat. Datatopics Unplugged is your go-to spot for relaxed discussions around tech, news, data, and society.

Dive into conversations that should flow as smoothly as your morning coffee (but don't), where industry insights meet laid-back banter. Whether you're a data aficionado or just someone curious about the digital age, pull up a chair, relax, and let's get into the heart of data, unplugged style!

In this episode: Slack's Data Practices: Discussing Slack's use of customer data to build models, the risks of global data leakage, and the impact of GDPR and AI regulations.ChatGPT's Data Analysis Improvements:  Discussing new features in ChatGPT that let you interrogate your data like a pro. The Loneliness of Data Scientists: Why being a lone data wolf is tough, and how collaboration is the key to success. Rustworkx for Graph Computation:  Evaluating Rustworkx as a robust tool for graphs compared to Networkx.Dolt - Git for Data: Comparing Dolt and DVC as tools for data version control. Check it out.Veo by Google DeepMind: An overview of Google's Veo technology and its potential applications.Ilya Sutskever’s Departure from OpenAI: What does Ilya Sutskever’s exit mean for OpenAI with Jakub Pachocki stepping in?Hot Takes - No Data Engineering Roadmap? Debating the necessity of a data engineering roadmap and the prominence of SQL skills.

Everything in the world has a price, including improving and scaling your data and AI functions. That means that at some point someone will question the ROI of your projects, and often, these projects will be looked at under the lens of monetization. But how do you ensure that what you’re working on is not only providing value to the business but also creating financial gain? What conditions need to be met to prove your project's success and turn value into cash? Vin Vashishta is the author of ‘From Data to Profit’ (Wiley), the playbook for monetizing data and AI. He built V-Squared from client 1 to one of the oldest data and AI consulting firms. For the last eight years, he has been recognized as a data and AI thought leader. Vin is a LinkedIn Top Voice and Gartner Ambassador. His background spans over 25 years in strategy, leadership, software engineering, and applied machine learning. Dr. Tiffany Perkins-Munn is on a mission to bring research, analytics, and data science to life. She earned her Ph.D. in Social-Personality Psychology with an interdisciplinary focus on Advanced Quantitative Methods. Her insights are the subject of countless lectures on psychology, statistics, and their real-world applications. As the Head of Data and Analytics for the innovative CDAO organization at J.P. Morgan Chase, her knack involves unraveling complex business problems through operational enhancements, augmented financials, and intuitive recruiting. After over two decades in the industry, she consistently forges robust relationships across the corporate spectrum, becoming one of the Top 10 Finalists in the Merrill Lynch Global Markets Innovation Program. In the episode, Richie, Vin, and Tiffany explore the challenges of monetizing data and AI projects, including how technical, organizational, and strategic factors affect your input, the importance of aligning technical and business objectives to keep outputs focused on core business goals, how to assess your organization's data and AI maturity, examples of high data maturity businesses, data security and compliance, quick wins in data transformation and infrastructure, why long-term vision and strategy matter, and much more. Links Mentioned in the Show: Connect with Tiffany on LinkedinConnect with Vin on LinkedinVin’s Website[Course] Data Governance Concepts Related Episode: Scaling Enterprise Analytics with Libby Duane Adams, Chief Advocacy Officer and Co-Founder of Alteryx New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

Você já se perguntou como é trabalhar com dados em um cenário global? Pensando nisso, vamos explorar as incríveis jornadas de profissionais da Thoughtworks, que transformaram suas carreiras com projetos internacionais.

Neste episódio do Data Hackers — a maior comunidade de AI e Data Science do Brasil-, conheçam: Carol Assis — Analista de Dados, e Viviana Tercerôs — Engenheira de Dados, ambas atuantes na Thoughtworks, que contam pra gente, curiosidades e habilidades necessárias para trabalhar com projetos em outros países.

Lembrando que você pode encontrar todos os podcasts da comunidade Data Hackers no Spotify, iTunes, Google Podcast, Castbox e muitas outras plataformas. Caso queira, você também pode ouvir o episódio aqui no post mesmo!

Falamos no episódio

Conheça nosso convidado:

Carol Assis — Analista de Dados na Thoughtworks Viviana Tercerôs — Engenheira de Dados na Thoughtworks

Nossa Bancada Data Hackers:

Monique Femme — Head of Community Management na Data Hackers Paulo Vasconcellos — Co-founder da Data Hackers e Principal Data Scientist na Hotmart. Gabriel Lages — Co-founder da Data Hackers e Data & Analytics Sr. Director na Hotmart.

Referências:

Vídeo da Carol Assis compartilhando sobre ter contato com outras culturas na Thoughtworks: https://youtu.be/F2ysUME96Y8?si=K-Z_Yr0K_hEtyu8d Série completa “Carreiras em Dados na Thoughtworks”: https://youtube.com/playlist?list=PL2Xtpd21mvkcTeHhsayg9IxKSnpScf9UQ&si=muC2dGGFGca8U6hP Saiba mais sobre a vida na Thoughtworks, como profissional de Dados e IA. Confira a série “Carreiras em Dados”: https://youtube.com/playlist?list=PL2Xtpd21mvkcTeHhsayg9IxKSnpScf9UQ&si=muC2dGGFGca8U6hP Se você tem curiosidade em saber como é trabalhar na Thoughtworks, essa newsletter foi feita para você! Assine o Access e tenha acesso a oportunidades de carreira e convites para eventos técnicos perto de você. Não fique de fora! https://www.thoughtworks.com/pt-br/careers/access

Databricks ML in Action

Dive into the Databricks Data Intelligence Platform and learn how to harness its full potential for creating, deploying, and maintaining machine learning solutions. This book covers everything from setting up your workspace to integrating state-of-the-art tools such as AutoML and VectorSearch, imparting practical skills through detailed examples and code. What this Book will help me do Set up and manage a Databricks workspace tailored for effective data science workflows. Implement monitoring to ensure data quality and detect drift efficiently. Build, fine-tune, and deploy machine learning models seamlessly using Databricks tools. Operationalize AI projects including feature engineering, data pipelines, and workflows on the Databricks Lakehouse architecture. Leverage integrations with popular tools like OpenAI's ChatGPT to expand your AI project capabilities. Author(s) This book is authored by Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, and Hayley Horn, seasoned experts in data science and machine learning from Databricks. Their collective years of expertise in big data and AI technologies ensure a rich and insightful perspective. Through their work, they strive to make complex concepts accessible and actionable. Who is it for? This book serves as an ideal guide for machine learning engineers, data scientists, and technically inclined managers. It's well-suited for those transitioning to the Databricks environment or seeking to deepen their Databricks-based machine learning implementation skills. Whether you're an ambitious beginner or an experienced professional, this book provides clear pathways to success.

Speedily adopting new technologies can give your business a competitive advantage, but with so much happening in the world of generative AI, it's difficult to know what to adopt. In this episode, Richie chats to two venture capitalists to get their view on the global AI landscape, where we are in the AI hype cycle, and how to adopt AI tech. Beyond this, we explore Rocketship.vc's use of data and algorithms to make investment decisions in early-stage startups. If our previous episode’s deep dive into 2024’s data & AI trends with VC Tom Tunguz got you excited about how investors are looking at the market at the moment, then this episode is sure to do the same. This time, we have twice the insight, thanks to our two guests. Madhu Shalini Iyer is a Managing Partner at Rocketship.vc, a Silicon Valley based fund investing globally. She was the Chief Data Officer of Gojek and helped grow the business into a $10 billion unicorn. In addition to being a board member, she started the Singapore office and played an active role in the strategy, new business development, and ‘data as a competitive advantage’. Prior to Gojek, Madhu was part of the founding team of Intuit’s Quickbooks Lending Platform. As the data science leader at Intuit, Madhu helped grow the platform to $300 million and holds 2 patents in the areas of user data augmented algorithms for financial inclusion. Madhu was also the Chief Data Officer for Ethoslending. There she built the underwriting platform and was responsible for all b2c revenue, resulting in $65 million gross market value per month. Madhu was further responsible for building and running the marketing team. Prior, Madhu was a partner at a $150m private equity fund, Stem Financial, in Hong Kong. She started her career as a senior data scientist with a leading think tank in Menlo Park, CA. Sailesh Ramakrishnan is also a Managing Partner at Rocketship.vc. Prior to Rocketship.vc, Sailesh was CTO and co-founder of LocBox (acquired by Square), a startup focussed on marketing for local businesses. Sailesh worked with Anand and Venky at their previous startup Kosmix, and continued on to Walmart as a Director of Engineering at @WalmartLabs. Before jumping into the startup world, Sailesh worked as a Computer Scientist at NASA Ames Research Center. Sailesh earned his Bachelors degree in Civil Engineering from IIT Madras, his Masters degree in Construction Management from Virginia Tech and another Master degree in Intelligent Systems from University of Pittsburgh. He was a Ph.D. candidate in Artificial Intelligence at the University of Michigan. In the episode, Richie, Madhu and Sailesh explore the generative AI revolution, categorizing generative AI tools, the impact of genAI across industries, investment philosophy and data-driven decision-making, the challenges and opportunities when investing in AI, future trends and predictions, regulatory and ethical considerations of AI, and much more.  Links Mentioned in the Show: Rocketship.vc[Course] Implementing AI Solutions in BusinessRelated Episode: Inside Algorithmic Trading with Anthony Markham, Vice President, Quantitative Developer at Deutsche BankSign up to RADAR: AI Edition New to DataCamp? Learn on the go using thea href="https://www.datacamp.com/mobile" rel="noopener noreferrer"...

With seemingly every organization wanting to enhance their AI capabilities, questions arise about who should be in charge of these initiatives. At the moment, it’s likely a CTO, CIO, or CDO, or a mixture of the three. The gold standard is to have someone in the C-suite whose sole focus is their AI projects: the Chief AI Officer. This role is so new that it's not yet widely understood. In this episode, we explore what the CAIO job entails. Philipp Herzig is the Chief AI Officer at SAP. He’s held a variety of roles within SAP, most recently SVP Head of Cross Product Engineering & Experience, however his experience covers intelligent enterprise & cross-architecture, head of engineering for cloud-native apps, a software development manager, and product owner.  In the full episode, Richie and Philipp explore what his day-to-day responsibilities are as a CAIO, the holistic approach to cross-team collaboration, non-technical interdepartmental work, AI strategy and implementation, challenges and success metrics, how to approach high-value AI use cases, insights into current AI developments and the importance of continuous learning, the exciting future of AI and much more. 

Links Mentioned in the Show: SAP’s AI CoPilot JouleSAP[Course] Implementing AI Solutions in BusinessRelated Episode: How Walmart Leverages Data & AI with Swati Kirti, Sr Director of Data Science at WalmartRewatch sessions from RADAR: The Analytics Edition

New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business