talk-data.com talk-data.com

Topic

Data Science

machine_learning statistics analytics

1516

tagged

Activity Trend

68 peak/qtr
2020-Q1 2026-Q1

Activities

1516 activities · Newest first

Machine Learning with PySpark: With Natural Language Processing and Recommender Systems

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. After reading thisbook, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications. What You Will Learn Build a spectrum of supervised and unsupervised machine learning algorithms Implement machine learning algorithms with Spark MLlib libraries Develop a recommender system with Spark MLlib libraries Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model Who This Book Is For Data science and machine learning professionals.

2017 Data Science Salary Survey

Get a clear picture of the salaries and bonuses data science professionals around the world receive, as well as the tools and cloud providers they use, the tasks they perform, and how interpersonal ("soft") skills might affect their pay. The fifth edition of O’Reilly’s online Data Science Salary Survey provides complete results from nearly 800 participants from 69 different countries, 42 different US states, and Washington, DC. With five years of data, the survey’s results are consistent enough to reliably identify changes and trends. The survey asked specific questions about industry, team, and company size, but also posed questions such as, "How easy is it to move to another position?" or "What is your next career step?" You can plug in your own data points to the survey model and see how you compare to other data science professionals in your industry. With this report, you’ll learn: Where data scientists make the highest salaries—by country and by US state Tools that respondents most commonly use on the job, and tools that contribute most to salary Activities that contribute to higher earnings How gender and bargaining skills affect salaries when all other factors are equal Salary differences between those using open source tools vs those using proprietary tools How the increase in respondents outside of the US signal a rise in international companies starting and growing data organizations Participate in the 2018 Survey: Spend just 5 to 10 minutes and take the anonymous salary survey here: https://www.oreilly.com/ideas/take-the-​data-science-salary-survey.

SAS for Mixed Models

This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book is part of the SAS Press program. Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models

Olá, Data Hackers. Sejam muito bem-vindos a mais um episódio do nosso podcast! O episódio dessa semana está incrível, pois batemos um papo sobre como é a rotina de um Engenheiro de Dados ou, como o Allan diz: "O melhor amigo do Cientista de Dados". Vamos entender o que é e o que faz um Data Engineer, que desafios ele enfrenta no dia a dia, que ferramentas usa, e como você pode se tornar um.

No papo de hoje, Paulo Vasconcellos, Allan Sene e Gabriel Lages convidaram Matheus Espanhol, Engenheiro de Dados na Wavy -  empresa do Grupo Moville -  e Thiago Chiarato, Engenheiro de Dados na Resultados Digitais.

Participantes:

  • Matheus Espanhol
  • Thiago Chiarato
  • Paulo Vasconcellos
  • Allan Sene
  • Gabriel Lages

Acesse o post do episódio para ter acesso as ferramentas que falamos no episódio: https://medium.com/data-hackers/o-que-um-engenheiro-de-dados-faz-data-hackers-podcast-619b1a0364e3

O Data Hackers é a maior comunidade brasileira aberta de Data Science, Machine Learning e Data Engineering. Você pode fazer parte dela acessando nosso site oficial e assinando nossa newsletter. Aproveite e entre em nosso Slack e interaja com os melhores profissionais e entusiastas da área.

This week, Kyle interviews Scott Nestler on the topic of Data Ethics. Today, no ubiquitous, formal ethical protocol exists for data science, although some have been proposed. One example is the INFORMS Ethics Guidelines. Guidelines like this are rather informal compared to other professions, like the Hippocratic Oath. Yet not every profession requires such a formal commitment. In this episode, Scott shares his perspective on a variety of ethical questions specific to data and analytics.

Bioinformatics with Python Cookbook - Second Edition

"Bioinformatics with Python Cookbook" offers a detailed exploration into the modern approaches to computational biology using the Python programming language. Through hands-on recipes, you will master the practical applications of bioinformatics, enabling you to analyze vast biological data effectively using Python libraries and tools. What this Book will help me do Master processing and analyzing genomic datasets in Python to enable accurate bioinformatics discoveries. Understand and apply next-generation sequencing techniques for advanced biological research. Learn to utilize machine learning approaches such as PCA and decision trees for insightful data analysis in biology. Gain proficiency in using high-performance computing frameworks like Dask and Spark for scalable bioinformatics workflows. Develop capabilities to visually represent biological data interactions and insights for presentation and analysis. Author(s) Tiago Antao is a computational scientist specializing in bioinformatics with extensive experience in Python programming applied to biological sciences. He has worked on numerous bioinformatics projects and has a special interest in using Python to bridge biology and data science. Tiago's approachable writing style ensures that both newcomers and experts benefit from his insights. Who is it for? This book is designed for bioinformatics professionals, researchers, and data scientists who are eager to harness the power of Python programming for their biological data analysis needs. If you are familiar with Python and are looking to tackle intermediate to advanced bioinformatics challenges using practical recipes, this book is ideal for you. It is suitable for those seeking to expand their knowledge in computational biology and data visualization techniques. Whether you are working on next-generation sequencing or population genetics, this resource will guide you effectively.

Hands-On Data Science with R

Dive into "Hands-On Data Science with R" and embark on a journey to master the R language for practical data science applications. This comprehensive guide walks through data manipulation, visualization, and advanced analytics, preparing you to tackle real-world data challenges with confidence. What this Book will help me do Understand how to utilize popular R packages effectively for data science tasks. Learn techniques for cleaning, preprocessing, and exploring datasets. Gain insights into implementing machine learning models in R for predictive analytics. Master the use of advanced visualization tools to extract and communicate insights. Develop expertise in integrating R with big data platforms like Hadoop and Spark. Author(s) This book was written by experts in data science and R including Doug Ortiz and his co-authors. They bring years of industry experience and a desire to teach, presenting complex topics in an approachable manner. Who is it for? Designed for data analysts, statisticians, or programmers with basic R knowledge looking to dive into machine learning and predictive analytics. If you're aiming to enhance your skill set or gain confidence in tackling real-world data problems, this book is an excellent choice.

Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics

Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.

Hands-On Data Science with SQL Server 2017

In "Hands-On Data Science with SQL Server 2017," you will discover how to implement end-to-end data analysis workflows, leveraging SQL Server's robust capabilities. This book guides you through collecting, cleaning, and transforming data, querying for insights, creating compelling visualizations, and even constructing predictive models for sophisticated analytics. What this Book will help me do Grasp the essential data science processes and how SQL Server supports them. Conduct data analysis and create interactive visualizations using Power BI. Build, train, and assess predictive models using SQL Server tools. Integrate SQL Server with R, Python, and Azure for enhanced functionality. Apply best practices for managing and transforming big data with SQL Server. Author(s) Marek Chmel and Vladimír Mužný bring their extensive experience in data science and database management to this book. Marek is a seasoned database specialist with a strong background in SQL, while Vladimír is known for his instructional expertise in analytics and data manipulation. Together, they focus on providing actionable insights and practical examples tailored for data professionals. Who is it for? This book is an ideal resource for aspiring and seasoned data scientists, data analysts, and database professionals aiming to deepen their expertise in SQL Server for data science workflows. Beginners with fundamental SQL knowledge will find it a guided entry into data science applications. It is especially suited for those who aim to implement data-driven solutions in their roles while leveraging SQL's capabilities.

Data Science, 2nd Edition

Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data. You’ll be able to: Gain the necessary knowledge of different data science techniques to extract value from data. Master the concepts and inner workings of 30 commonly used powerful data science algorithms. Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more... Contains fully updated content on data science, including tactics on how to mine business data for information Presents simple explanations for over twenty powerful data science techniques Enables the practical use of data science algorithms without the need for programming Demonstrates processes with practical use cases Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language Describes the commonly used setup options for the open source tool RapidMiner

Data Analysis and Visualization Using Python: Analyze Data to Create Visualizations for BI Systems

Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you’ll get a chance to revisit the concepts you’ve covered so far. What You Will Learn Use Python programming techniques for data science Master data collections in Python Create engaging visualizations for BI systems Deploy effective strategies for gathering and cleaning data Integrate the Seaborn and Matplotlib plotting systems Who This Book Is For Developers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.

Sejam muito bem-vindos a mais um episódio do seu podcast de Data Science preferido! Essa semana nós iremos falar sobre uma área que está crescendo cada vez mais no Brasil e no mundo: a área de Data-Driven Products. Você irá entender o que é essa área, que tipos de profissionais atuam nela e por que você deve começar a se especializar nela.

No episódio de hoje, Paulo Vasconcellos, Allan Sene e Gabriel Lages convidaram Dan Mark Printes, CPO da Tapps Games e que foi diretor de produto do Grupo Zap - responsáveis pelos sites do Zap Imóveis e do Viva Real.

Participantes:

  • Dan Mark Printes
  • Paulo Vasconcellos
  • Allan Sene
  • Gabriel Lages

Acesse o post do episódio para ter acesso as ferramentas que falamos no episódio: medium.com/data-hackers/data-driven-products-por-dentro-da-%C3%A1rea-de-produtos-orientados-a-dados-podcast-data-hackers-77dd70cf3e5f

Não faz parte da comunidade do Data Hackers ainda? Cadastre-se em nossa newsletter e em nosso Slack para ficar sempre de olho nas novidades: www.datahackers.com.br

Programming Skills for Data Science: Start Writing Code to Wrangle, Analyze, and Visualize Data with R, First Edition

The Foundational Hands-On Skills You Need to Dive into Data Science “Freeman and Ross have created the definitive resource for new and aspiring data scientists to learn foundational programming skills.” –From the foreword by Jared Lander, series editor Using data science techniques, you can transform raw data into actionable insights for domains ranging from urban planning to precision medicine. brings together all the foundational skills you need to get started, even if you have no programming or data science experience. Programming Skills for Data Science Leading instructors Michael Freeman and Joel Ross guide you through installing and configuring the tools you need to solve professional-level data science problems, including the widely used R language and Git version-control system. They explain how to wrangle your data into a form where it can be easily used, analyzed, and visualized so others can see the patterns you've uncovered. Step by step, you'll master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales. Freeman and Ross teach through practical examples and exercises that can be combined into complete data science projects. Everything's focused on real-world application, so you can quickly start analyzing your own data and getting answers you can act upon. Learn to Install your complete data science environment, including R and RStudio Manage projects efficiently, from version tracking to documentation Host, manage, and collaborate on data science projects with GitHub Master R language fundamentals: syntax, programming concepts, and data structures Load, format, explore, and restructure data for successful analysis Interact with databases and web APIs Master key principles for visualizing data accurately and intuitively Produce engaging, interactive visualizations with ggplot and other R packages Transform analyses into sharable documents and sites with R Markdown Create interactive web data science applications with Shiny Collaborate smoothly as part of a data science team Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

In this podcast, Stephen Wunker spent time discussing the future of organizations via cost innovations and how some enterprises connect a successful pricing strategy with their data strategy. He sheds light on what some successful companies do to stay competitive and keep innovating their cost strategies to find effective customer connections. He shares some challenges that leaders face in adopting a successful cost innovation strategy. The book "Costovation" and this podcast are relevant for anyone seeking to learn about innovative ways to define their cost strategies. It is especially relevant for data science leaders to understand how they could transform sales by connecting cost and innovation.

Timelines: 0:30 Stephen's journey 6:25 Introducing "costovation". 10:10 Cost management in the age of "freemium" and opensource. 12:35 Key points of "Cost-o-vation". 15:40 Resolving issues between cost and innovation. 18:26 Introducing radical ideas of innovation to companies. 21:40 Gauging innovation. 24:20 Role of data in costovation. 26:15 Why adopt cost-ovation? 31:44 Innovation tips and suggestions. 34:45 Example of a company that is practicing cost-o-vation. 37:15 Tenets of good leadership. 39:50 Scalability of cost-o-vation. 43:17 cost-ovation and the customer. 47:47 Stephen's favorite reads. 49:45 Key takeaways.

Stephen's Book: Costovation: Innovation That Gives Your Customers Exactly What They Want--And Nothing More by Stephen Wunker, Jennifer Luo Law amzn.to/2xYyRFs

Stephen's Recommended Read: The Three-Box Solution: A Strategy for Leading Innovation by Vijay Govindarajan amzn.to/2y2Sex6 Made to Stick: Why Some Ideas Survive and Others Die by Chip Heath, Dan Heath amzn.to/2Ct2SRV The Innovator's Solution: Creating and Sustaining Successful Growth by Clayton M. Christensen, Michael E. Raynor amzn.to/2DZ6jRK

Podcast Link: https://futureofdata.org/stephen-wunker-on-future-of-customer-success-through-cost-innovation-and-data/

Stephen's BIO: Stephen Wunker is the founder and managing director of New Markets Advisors, a Boston-based consultancy focused on innovation and growth strategy.

With a long track record of creating successful ventures, Stephen has consulted multinational firms and start-ups across six continents, developing dozens of new growth platforms for clients over the past decade. He also pioneered both mobile commerce and mobile marketing, and he led the team that created one of the world's first smartphones.

In addition to his entrepreneurial and corporate ventures, he was a long-term colleague of the leading innovation authority Harvard Business School Professor Clayton Christensen in establishing his consulting practice, Innosight. His previous experience includes years with the management consultancy Bain & Company, the Rockefeller Brothers Fund, and the Soros Foundations.

Stephen holds an MBA from Harvard Business School, a Master's in Public Administration from Columbia University, and a BA cum laude from Princeton University. Coauthor of “COSTOVATION: Innovation that Gives Your Customers Exactly What They Want—and Nothing More” (HarperCollins Leadership, Aug. 14), his third book, Stephen has contributed to Harvard Business Review, Forbes, and a range of journals, and has appeared on Bloomberg TV, BBC and other broadcasts. He has lived in the United States, United Kingdom, Netherlands, Japan, Ecuador, and Zambia, and is now based in Boston.

About #Podcast:

FutureOfData podcast is a conversation starter to bring leaders, influencers, and lead practitioners to come on the show and discuss their journey in creating the data-driven future.

Wanna Join? If you or any you know wants to join in, Register your interest by emailing us @ [email protected]

Want to sponsor? Email us @ [email protected]

Keywords: FutureOfData,

DataAnalytics,

Leadership,

Futurist,

Podcast,

BigData,

Strategy

Matplotlib 3.0 Cookbook

Matplotlib 3.0 Cookbook is your go-to guide for mastering the Matplotlib library in Python for creating a wide range of data visualizations. Through 150+ practical recipes, you will learn how to design intuitive and detailed charts, graphs, and dashboards, navigating from simple plots to advanced interactive and 3D visualizations. What this Book will help me do Develop professional-quality data visualizations using Matplotlib. Leverage Matplotlib's API for both quick plotting and advanced customization. Create interactive and animative plots for engaging data representation. Extend Matplotlib functionalities with toolkits like cartopy and axisartist. Integrate Matplotlib figures into GUI applications for broader usage. Author(s) None Poladi and None Borkar are experienced Python developers and enthusiasts who have collaborated in creating a resourceful guide to Matplotlib. They bring extensive experience in data science visualization and Python programming. Their collaborative effort ensures clarity and an approachable learning curve for anyone delving into graphical data representation using Matplotlib. Who is it for? This book is ideal for data scientists, Python developers, and visualization enthusiasts eager to enhance their technical plotting skills. The content covers both fundamentals and advanced topics, suitable for users ranging from beginners curious about Python visualization to experts seeking streamlined workflows and advanced techniques.

Summary

As data science becomes more widespread and has a bigger impact on the lives of people, it is important that those projects and products are built with a conscious consideration of ethics. Keeping ethical principles in mind throughout the lifecycle of a data project helps to reduce the overall effort of preventing negative outcomes from the use of the final product. Emily Miller and Peter Bull of Driven Data have created Deon to improve the communication and conversation around ethics among and between data teams. It is a Python project that generates a checklist of common concerns for data oriented projects at the various stages of the lifecycle where they should be considered. In this episode they discuss their motivation for creating the project, the challenges and benefits of maintaining such a checklist, and how you can start using it today.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat This is your host Tobias Macey and this week I am sharing an episode from my other show, Podcast.init, about a project from Driven Data called Deon. It is a simple tool that generates a checklist of ethical considerations for the various stages of the lifecycle for data oriented projects. This is an important topic for all of the teams involved in the management and creation of projects that leverage data. So give it a listen and if you like what you hear, be sure to check out the other episodes at pythonpodcast.com

Interview

Introductions How did you get introduced to Python? Can you start by describing what Deon is and your motivation for creating it? Why a checklist, specifically? What’s the advantage of this over an oath, for example? What is unique to data science in terms of the ethical concerns, as compared to traditional software engineering? What is the typical workflow for a team that is using Deon in their projects? Deon ships with a default checklist but allows for customization. What are some common addendums that you have seen?

Have you received pushback on any of the default items?

How does Deon simplify communication around ethics across team boundaries? What are some of the most often overlooked items? What are some of the most difficult ethical concerns to comply with for a typical data science project? How has Deon helped you at Driven Data? What are the customer facing impacts of embedding a discussion of ethics in the product development process? Some of the items on the default checklist coincide with regulatory requirements. Are there any cases where regulation is in conflict with an ethical concern that you would like to see practiced? What are your hopes for the future of the Deon project?

Keep In Touch

Emily

LinkedIn ejm714 on GitHub

Peter

LinkedIn @pjbull on Twitter pjbull on GitHub

Driven Data

@drivendataorg on Twitter drivendataorg on GitHub Website

Picks

Tobias

Richard Bond Glass Art

Emily

Tandem Coffee in Portland, Maine

Peter

The Model Bakery in Saint Helena and Napa, California

Links

Deon Driven Data International Development Brookings Institution Stata Econometrics Metis Bootcamp Pandas

Podcast Episode

C# .NET Podcast.init Episode On Software Ethics Jupyter Notebook

Podcast Episode

Word2Vec cookiecutter data science Logistic Regression

The intro and outro music is

Data Analytics for IT Networks: Developing Innovative Use Cases, First Edition

Use data analytics to drive innovation and value throughout your network infrastructure Network and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources. After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance. Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use cases Explore and access network data sources, and choose the right data for your problem Innovate more successfully by understanding mental models and cognitive biases Walk through common analytics use cases from many industries, and adapt them to your environment Uncover new data science use cases for optimizing large networks Master proven algorithms, models, and methodologies for solving network problems Adapt use cases built with traditional statistical methods Use data science to improve network infrastructure analysisAnalyze control and data planes with greater sophistication Fully leverage your existing Cisco tools to collect, analyze, and visualize data

In this podcast, John Busby(@johnmbusby), Chief Analytics Officer @CenterfieldUSA, talks about his journey leading the data analytics practice of a digital marketing agency. He sheds light on some methodologies for building a sound data science practice. He sheds light on the future of digital marketing and shared some big opportunities ripe for disruption in the digital space.

Timeline: 0:28 John's journey. 4:26 Introduction to Centerfield. 6:00 John's role. 6:50 Designing a common platform for customers. 9:15 Analytics in Amazon. 11:02 Data science and marketing. 18:02 Importance of understanding the product for marketing. 21:44 AI in the marketing business. 25:26 Making sense of customer behavior. 27:50 End to end consumer behavior. 31:05 Editing and calibrating KPIs. 32:53 Creating an inside driven organization. 35:35 Recipe for a successful chief analytic officer. 37:46 On data bias. 39:12 Hiring the right people. 41:33 Big opportunities in digital marketing. 44:15 Future of digital marketing. 45:27 John's recipe for success. 48:52 John's favorite reads. 50:35 Key takeaways.

John's Recommended Read: Secrets of Professional Tournament Poker (D&B Poker) by Jonathan Little amzn.to/2MNKjN3

Podcast Link: https://futureofdata.org/data-today-shaping-digital-marketing-of-tomorrow-johnmbusby-centerfieldusa/

John's BIO: John Busby serves as Centerfield’s Chief Analytics Officer. A seasoned digital marketing executive, John leads the company’s data science, analytics and insights teams. Before joining Centerfield, John was Head of Analytics for Amazon’s grocery delivery service and responsible for business intelligence, data science and automated reporting. Prior to Amazon, John was Senior Vice President of Analytics and Marketing at Marchex. John began his career in product management for InfoSpace, Go2net and IQ Chart. He holds a Bachelor of Science from Northwestern University. Outside of work, John coaches youth hockey, and enjoys sports, poker and hanging out with his wife and two children.

About #Podcast:

FutureOfData podcast is a conversation starter to bring leaders, influencers and lead practitioners to come on show and discuss their journey in creating the data driven future.

Wanna Join? If you or any you know wants to join in, Register your interest by mailing us @ [email protected]

Want to sponsor? Email us @ [email protected]

Keywords: FutureOfData,

DataAnalytics,

Leadership,

Futurist,

Podcast,

BigData,

Strategy

In this episode, Wayne Eckerson and Rich Fox discuss what differentiates data science from analytics, why and how data science addresses business needs, why balance scorecards are relevant, and why Excel is a problem. Throughout the podcast, Fox shares many real-life examples and personal experiences.

Fox is vice president of Data Science and Analytics at Apex Parks Group, one of the largest entertainment center companies in the United States, which operates amusement parks, water parks, and family entertainment centers.

Handbook of Healthcare Analytics

How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.