talk-data.com talk-data.com

Topic

JavaScript

programming_language web_development front_end

20

tagged

Activity Trend

12 peak/qtr
2020-Q1 2026-Q1

Activities

20 activities · Newest first

Brought to You By: •⁠ Statsig ⁠ — ⁠ The unified platform for flags, analytics, experiments, and more. Statsig are helping make the first-ever Pragmatic Summit a reality. Join me and 400 other top engineers and leaders on 11 February, in San Francisco for a special one-day event. Reserve your spot here. •⁠ Linear ⁠ — ⁠ The system for modern product development. Engineering teams today move much faster, thanks to AI. Because of this, coordination increasingly becomes a problem. This is where Linear helps fast-moving teams stay focused. Check out Linear. — As software engineers, what should we know about writing secure code? Johannes Dahse is the VP of Code Security at Sonar and a security expert with 20 years of industry experience. In today’s episode of The Pragmatic Engineer, he joins me to talk about what security teams actually do, what developers should own, and where real-world risk enters modern codebases. We cover dependency risk, software composition analysis, CVEs, dynamic testing, and how everyday development practices affect security outcomes. Johannes also explains where AI meaningfully helps, where it introduces new failure modes, and why understanding the code you write and ship remains the most reliable defense. If you build and ship software, this episode is a practical guide to thinking about code security under real-world engineering constraints. — Timestamps (00:00) Intro (02:31) What is penetration testing? (06:23) Who owns code security: devs or security teams? (14:42) What is code security?  (17:10) Code security basics for devs (21:35) Advanced security challenges (24:36) SCA testing  (25:26) The CVE Program  (29:39) The State of Code Security report  (32:02) Code quality vs security (35:20) Dev machines as a security vulnerability (37:29) Common security tools (42:50) Dynamic security tools (45:01) AI security reviews: what are the limits? (47:51) AI-generated code risks (49:21) More code: more vulnerabilities (51:44) AI’s impact on code security (58:32) Common misconceptions of the security industry (1:03:05) When is security “good enough?” (1:05:40) Johannes’s favorite programming language — The Pragmatic Engineer deepdives relevant for this episode: • What is Security Engineering? •⁠ Mishandled security vulnerability in Next.js •⁠ Okta Schooled on Its Security Practices — Production and marketing by ⁠⁠⁠⁠⁠⁠⁠⁠https://penname.co/⁠⁠⁠⁠⁠⁠⁠⁠. For inquiries about sponsoring the podcast, email [email protected].

Get full access to The Pragmatic Engineer at newsletter.pragmaticengineer.com/subscribe

Send us a text

Welcome to the cozy corner of the tech world where ones and zeros mingle with casual chit-chat. Datatopics Unplugged is your go-to spot for relaxed discussions around tech, news, data, and society. Dive into conversations that should flow as smoothly as your morning coffee (but don’t), where industry insights meet laid-back banter. Whether you’re a data aficionado or just someone curious about the digital age, pull up a chair, relax, and let’s get into the heart of data, unplugged style! In this episode, we are joined by special guest Nico for a lively and wide-ranging tech chat. Grab your headphones and prepare for: Strava’s ‘Athlete Intelligence’ feature: A humorous dive into how workout apps are getting smarter—and a little sassier.Frontend frameworks: HTMX is a tough choice: A candid discussion on using React versus emerging alternatives like HTMX and when to keep things lightweight.Octoverse 2024 trends and language wars: Python takes the lead over JavaScript as the top GitHub language, and we dissect why Go, TypeScript, and Rust are getting love too.GenAI meets Minecraft: Imagine procedurally generated worlds and dreamlike coherence breaks—Minecraft-style. How GenAI could redefine gameplay narratives and NPC behavior.OpenAI’s O1 model leak: Insights on the recent leak, what’s new, and its implications for the future of AI.Tiger Beetle’s transactional databases and testing tales: Nico walks us through Tiger Style, deterministic simulation testing, and why it’s a game changer for distributed databases.Automated testing for LLMOps: A quick overview of automated testing for large language models and its role in modern AI workflows.DeepLearning.ai’s short courses: Quick, impactful learning to level up your AI skills.

Send us a text Welcome to Datatopics Unplugged, where the tech world’s buzz meets laid-back banter. In each episode, we dive into the latest in AI, data science, and technology—perfect for your inner geek or curious mind. Pull up a seat, tune in, and join us for insights, laughs, and the occasional hot take on the digital world.

In this episode, we are joined by Vitale to discuss:

Meta’s video generation breakthrough: Explore Meta’s new “MovieGen” model family that generates hyper-realistic, 16-second video clips with reflections, consistent spatial details, and multi-frame coherence. Also discussed: Sora, a sneak peek at Meta’s open-source possibilities. For a look back, check out this classic AI-generated video of Will Smith eating spaghetti. Anthropic’s Claude 3.5 updates: Meet Claude 3.5 and its “computer use” feature, letting it navigate your screen for you. Easily fine-tune & train LLMs, faster with Unsloth: Discover tools that simplify model fine-tuning and deployment, making it easier for small-scale developers to harness AI’s power. Don’t miss Gerganov’s GitHub contributions in this space, too. Deno 2.0 release hype: With a splashy promo video, Deno’s JavaScript runtime enters the scene as a streamlined, secure alternative to Node.js.

Send us a text Welcome to the cozy corner of the tech world where ones and zeros mingle with casual chit-chat. DataTopics Unplugged is your go-to spot for relaxed discussions around tech, news, data, and society. In this special one-year anniversary episode, we reminisce about our journey and dive into some intriguing tech stories: WordPress Governance Drama: We discuss recent issues with WordPress. Find out what’s behind the Automattic and WP Engine tension.Astral’s Business Model: Charlie Marsh shares insights into how Astral plans to balance open-source ideals with profitability.Deno 2.0 Release: Deno 2.0 claims to be a “Cargo for JavaScript.” Check out its new features and see how it compares to Node.js.OpenAI’s Soaring Valuation: OpenAI has hit a staggering $150 billion valuation after raising $6.5 billion in new funding.Adobe’s GenAI Policy: Adobe clarified their stance on GenAI, ensuring Firefly is only trained on stock images to support creators.Instructor Library for LLMs: Discover the Instructor library for turning unstructured data into structured outputs with ease.Repo2txt Tool: Convert your GitHub repo into a single text file using Repo2txt for easy analysis.Retro PC Fonts Galore: Explore a treasure trove of vintage fonts with the Ultimate Old-School PC Font Pack.Bop Spotter – Cultural Surveillance: Bop Spotter uses Shazam to capture the music trends and cultural vibes of San Francisco’s Mission District.

The first episode of The Pragmatic Engineer Podcast is out. Expect similar episodes every other Wednesday. You can add the podcast in your favorite podcast player, and have future episodes downloaded automatically. Listen now on Apple, Spotify, and YouTube. Brought to you by: • Codeium: ​​Join the 700K+ developers using the IT-approved AI-powered code assistant. • TLDR: Keep up with tech in 5 minutes — On the first episode of the Pragmatic Engineer Podcast, I am joined by Simon Willison. Simon is one of the best-known software engineers experimenting with LLMs to boost his own productivity: he’s been doing this for more than three years, blogging about it in the open. Simon is the creator of Datasette, an open-source tool for exploring and publishing data. He works full-time developing open-source tools for data journalism, centered on Datasette and SQLite. Previously, he was an engineering director at Eventbrite, joining through the acquisition of Lanyrd, a Y Combinator startup he co-founded in 2010. Simon is also a co-creator of the Django Web Framework. He has been blogging about web development since the early 2000s. In today’s conversation, we dive deep into the realm of Gen AI and talk about the following:  • Simon’s initial experiments with LLMs and coding tools • Why fine-tuning is generally a waste of time—and when it’s not • RAG: an overview • Interacting with GPTs voice mode • Simon’s day-to-day LLM stack • Common misconceptions about LLMs and ethical gray areas  • How Simon’s productivity has increased and his generally optimistic view on these tools • Tips, tricks, and hacks for interacting with GenAI tools • And more! I hope you enjoy this episode. — In this episode, we cover: (02:15) Welcome (05:28) Simon’s ‘scary’ experience with ChatGPT (10:58) Simon’s initial experiments with LLMs and coding tools (12:21) The languages that LLMs excel at (14:50) To start LLMs by understanding the theory, or by playing around? (16:35) Fine-tuning: what it is, and why it’s mostly a waste of time (18:03) Where fine-tuning works (18:31) RAG: an explanation (21:34) The expense of running testing on AI (23:15) Simon’s current AI stack  (29:55) Common misconceptions about using LLM tools (30:09) Simon’s stack – continued  (32:51) Learnings from running local models (33:56) The impact of Firebug and the introduction of open-source  (39:42) How Simon’s productivity has increased using LLM tools (41:55) Why most people should limit themselves to 3-4 programming languages (45:18) Addressing ethical issues and resistance to using generative AI (49:11) Are LLMs are plateauing? Is AGI overhyped? (55:45) Coding vs. professional coding, looking ahead (57:27) The importance of systems thinking for software engineers  (1:01:00) Simon’s advice for experienced engineers (1:06:29) Rapid-fire questions — Where to find Simon Willison: • X: https://x.com/simonw • LinkedIn: https://www.linkedin.com/in/simonwillison/ • Website: https://simonwillison.net/ • Mastodon: https://fedi.simonwillison.net/@simon — Referenced: • Simon’s LLM project: https://github.com/simonw/llm • Jeremy Howard’s Fast Ai: https://www.fast.ai/ • jq programming language: https://en.wikipedia.org/wiki/Jq_(programming_language) • Datasette: https://datasette.io/ • GPT Code Interpreter: https://platform.openai.com/docs/assistants/tools/code-interpreter • Open Ai Playground: https://platform.openai.com/playground/chat • Advent of Code: https://adventofcode.com/ • Rust programming language: https://www.rust-lang.org/ • Applied AI Software Engineering: RAG: https://newsletter.pragmaticengineer.com/p/rag • Claude: https://claude.ai/ • Claude 3.5 sonnet: https://www.anthropic.com/news/claude-3-5-sonnet • ChatGPT can now see, hear, and speak: https://openai.com/index/chatgpt-can-now-see-hear-and-speak/ • GitHub Copilot: https://github.com/features/copilot • What are Artifacts and how do I use them?: https://support.anthropic.com/en/articles/9487310-what-are-artifacts-and-how-do-i-use-them • Large Language Models on the command line: https://simonwillison.net/2024/Jun/17/cli-language-models/ • Llama: https://www.llama.com/ • MLC chat on the app store: https://apps.apple.com/us/app/mlc-chat/id6448482937 • Firebug: https://en.wikipedia.org/wiki/Firebug_(software)# • NPM: https://www.npmjs.com/ • Django: https://www.djangoproject.com/ • Sourceforge: https://sourceforge.net/ • CPAN: https://www.cpan.org/ • OOP: https://en.wikipedia.org/wiki/Object-oriented_programming • Prolog: https://en.wikipedia.org/wiki/Prolog • SML: https://en.wikipedia.org/wiki/Standard_ML • Stabile Diffusion: https://stability.ai/ • Chain of thought prompting: https://www.promptingguide.ai/techniques/cot • Cognition AI: https://www.cognition.ai/ • In the Race to Artificial General Intelligence, Where’s the Finish Line?: https://www.scientificamerican.com/article/what-does-artificial-general-intelligence-actually-mean/ • Black swan theory: https://en.wikipedia.org/wiki/Black_swan_theory • Copilot workspace: https://githubnext.com/projects/copilot-workspace • Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems: https://www.amazon.com/Designing-Data-Intensive-Applications-Reliable-Maintainable/dp/1449373321 • Bluesky Global: https://www.blueskyglobal.org/ • The Atrocity Archives (Laundry Files #1): https://www.amazon.com/Atrocity-Archives-Laundry-Files/dp/0441013651 • Rivers of London: https://www.amazon.com/Rivers-London-Ben-Aaronovitch/dp/1625676158/ • Vanilla JavaScript: http://vanilla-js.com/ • jQuery: https://jquery.com/ • Fly.io: https://fly.io/ — Production and marketing by https://penname.co/. For inquiries about sponsoring the podcast, email [email protected].

Get full access to The Pragmatic Engineer at newsletter.pragmaticengineer.com/subscribe

Send us a text 🎙️ Episode Special: Insights from RootsConf – The Data Dialogue Series Welcome to a special episode of our podcast, direct from the halls of the fifth annual RootsConf, brought to you by Dataroots. This year's conference is buzzing with innovative ideas and cutting-edge tech discussions. We're excited to share with you three thought-provoking interviews with some of the most insightful presenters at the event. 🗣️ Exploring the Future with Sophie & Senne: Voice Cloning: Join us as we delve into the fascinating world of voice cloning. Sophie and Senne offer an in-depth look at how this technology is developed and the ethical considerations it brings to the table. It's a blend of technology and responsibility.💻 Navigating Data Integration Challenges with Nick: We switch gears to data integration challenges with Nick, who also shares his triggering perspective on the role of JavaScript in data solutions. But on a more serious note, it's a practical take on the complexities of integrating cutting-edge tech into existing systems.📊 Increasing Dashboard Adoption: Insights from Sophie & Ben: Rounding out our interviews, Sophie and Ben discuss strategies to boost the adoption and effectiveness of data dashboards. They emphasize the importance of making these tools accessible and engaging for a broader audience.Join us for this special episode where we balance deep tech insights with accessible discussions. Perfect for enthusiasts and professionals alike who are keen to stay ahead in the world of data and technology. Intro music courtesy of fesliyanstudios.com 🎵

Summary

Building a data platform that is enjoyable and accessible for all of its end users is a substantial challenge. One of the core complexities that needs to be addressed is the fractal set of integrations that need to be managed across the individual components. In this episode Tobias Macey shares his thoughts on the challenges that he is facing as he prepares to build the next set of architectural layers for his data platform to enable a larger audience to start accessing the data being managed by his team.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Introducing RudderStack Profiles. RudderStack Profiles takes the SaaS guesswork and SQL grunt work out of building complete customer profiles so you can quickly ship actionable, enriched data to every downstream team. You specify the customer traits, then Profiles runs the joins and computations for you to create complete customer profiles. Get all of the details and try the new product today at dataengineeringpodcast.com/rudderstack You shouldn't have to throw away the database to build with fast-changing data. You should be able to keep the familiarity of SQL and the proven architecture of cloud warehouses, but swap the decades-old batch computation model for an efficient incremental engine to get complex queries that are always up-to-date. With Materialize, you can! It’s the only true SQL streaming database built from the ground up to meet the needs of modern data products. Whether it’s real-time dashboarding and analytics, personalization and segmentation or automation and alerting, Materialize gives you the ability to work with fresh, correct, and scalable results — all in a familiar SQL interface. Go to dataengineeringpodcast.com/materialize today to get 2 weeks free! Developing event-driven pipelines is going to be a lot easier - Meet Functions! Memphis functions enable developers and data engineers to build an organizational toolbox of functions to process, transform, and enrich ingested events “on the fly” in a serverless manner using AWS Lambda syntax, without boilerplate, orchestration, error handling, and infrastructure in almost any language, including Go, Python, JS, .NET, Java, SQL, and more. Go to dataengineeringpodcast.com/memphis today to get started! Data lakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the data lake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics. Trusted by teams of all sizes, including Comcast and Doordash, Starburst is a data lake analytics platform that delivers the adaptability and flexibility a lakehouse ecosystem promises. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data. Want to see Starburst in action? Go to dataengineeringpodcast.com/starburst and get $500 in credits to try Starburst Galaxy today, the easiest and fastest way to get started using Trino. Your host is Tobias Macey and today I'll be sharing an update on my own journey of building a data platform, with a particular focus on the challenges of tool integration and maintaining a single source of truth

Interview

Introduction How did you get involved in the area of data management? data sharing weight of history

existing integrations with dbt switching cost for e.g. SQLMesh de facto standard of Airflow

Single source of truth

permissions management across application layers Database engine Storage layer in a lakehouse Presentation/access layer (BI) Data flows dbt -> table level lineage orchestration engine -> pipeline flows

task based vs. asset based

Metadata platform as the logical place for horizontal view

Contact Info

LinkedIn Website

Parting Questio

Summary

Building streaming applications has gotten substantially easier over the past several years. Despite this, it is still operationally challenging to deploy and maintain your own stream processing infrastructure. Decodable was built with a mission of eliminating all of the painful aspects of developing and deploying stream processing systems for engineering teams. In this episode Eric Sammer discusses why more companies are including real-time capabilities in their products and the ways that Decodable makes it faster and easier.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Introducing RudderStack Profiles. RudderStack Profiles takes the SaaS guesswork and SQL grunt work out of building complete customer profiles so you can quickly ship actionable, enriched data to every downstream team. You specify the customer traits, then Profiles runs the joins and computations for you to create complete customer profiles. Get all of the details and try the new product today at dataengineeringpodcast.com/rudderstack This episode is brought to you by Datafold – a testing automation platform for data engineers that finds data quality issues before the code and data are deployed to production. Datafold leverages data-diffing to compare production and development environments and column-level lineage to show you the exact impact of every code change on data, metrics, and BI tools, keeping your team productive and stakeholders happy. Datafold integrates with dbt, the modern data stack, and seamlessly plugs in your data CI for team-wide and automated testing. If you are migrating to a modern data stack, Datafold can also help you automate data and code validation to speed up the migration. Learn more about Datafold by visiting dataengineeringpodcast.com/datafold You shouldn't have to throw away the database to build with fast-changing data. You should be able to keep the familiarity of SQL and the proven architecture of cloud warehouses, but swap the decades-old batch computation model for an efficient incremental engine to get complex queries that are always up-to-date. With Materialize, you can! It’s the only true SQL streaming database built from the ground up to meet the needs of modern data products. Whether it’s real-time dashboarding and analytics, personalization and segmentation or automation and alerting, Materialize gives you the ability to work with fresh, correct, and scalable results — all in a familiar SQL interface. Go to dataengineeringpodcast.com/materialize today to get 2 weeks free! As more people start using AI for projects, two things are clear: It’s a rapidly advancing field, but it’s tough to navigate. How can you get the best results for your use case? Instead of being subjected to a bunch of buzzword bingo, hear directly from pioneers in the developer and data science space on how they use graph tech to build AI-powered apps. . Attend the dev and ML talks at NODES 2023, a free online conference on October 26 featuring some of the brightest minds in tech. Check out the agenda and register today at Neo4j.com/NODES. Your host is Tobias Macey and today I'm interviewing Eric Sammer about starting your stream processing journey with Decodable

Interview

Introduction How did you get involved in the area of data management? Can you describe what Decodable is and the story behind it?

What are the notable changes to the Decodable platform since we last spoke? (October 2021) What are the industry shifts that have influenced the product direction?

What are the problems that customers are trying to solve when they come to Decodable? When you launched your focus was on SQL transformations of streaming data. What was the process for adding full Java support in addition to SQL? What are the developer experience challenges that are particular to working with streaming data?

How have you worked to address that in the Decodable platform and interfaces?

As you evolve the technical and product direction, what is your heuristic for balancing the unification of interfaces and system integration against the ability to swap different components or interfaces as new technologies are introduced? What are the most interesting, innovative, or unexpected ways that you have seen Decodable used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Decodable? When is Decodable the wrong choice? What do you have planned for the future of Decodable?

Contact Info

esammer on GitHub LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

Decodable

Podcast Episode

Understanding the Apache Flink Journey Flink

Podcast Episode

Debezium

Podcast Episode

Kafka Redpanda

Podcast Episode

Kinesis PostgreSQL

Podcast Episode

Snowflake

Podcast Episode

Databricks Startree Pinot

Podcast Episode

Rockset

Podcast Episode

Druid InfluxDB Samza Storm Pulsar

Podcast Episode

ksqlDB

Podcast Episode

dbt GitHub Actions Airbyte Singer Splunk Outbox Pattern

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Sponsored By: Neo4J: NODES Conference Logo

NODES 2023 is a free online conference focused on graph-driven innovations with content for all skill levels. Its 24 hours are packed with 90 interactive technical sessions from top developers and data scientists across the world covering a broad range of topics and use cases. The event tracks: - Intelligent Applications: APIs, Libraries, and Frameworks – Tools and best practices for creating graph-powered applications and APIs with any software stack and programming language, including Java, Python, and JavaScript - Machine Learning and AI – How graph technology provides context for your data and enhances the accuracy of your AI and ML projects (e.g.: graph neural networks, responsible AI) - Visualization: Tools, Techniques, and Best Practices – Techniques and tools for exploring hidden and unknown patterns in your data and presenting complex relationships (knowledge graphs, ethical data practices, and data representation)

Don’t miss your chance to hear about the latest graph-powered implementations and best practices for free on October 26 at NODES 2023. Go to Neo4j.com/NODES today to see the full agenda and register!Rudderstack: Rudderstack

Introducing RudderStack Profiles. RudderStack Profiles takes the SaaS guesswork and SQL grunt work out of building complete customer profiles so you can quickly ship actionable, enriched data to every downstream team. You specify the customer traits, then Profiles runs the joins and computations for you to create complete customer profiles. Get all of the details and try the new product today at dataengineeringpodcast.com/rudderstackMaterialize: Materialize

You shouldn't have to throw away the database to build with fast-changing data. Keep the familiar SQL, keep the proven architecture of cloud warehouses, but swap the decades-old batch computation model for an efficient incremental engine to get complex queries that are always up-to-date.

That is Materialize, the only true SQL streaming database built from the ground up to meet the needs of modern data products: Fresh, Correct, Scalable — all in a familiar SQL UI. Built on Timely Dataflow and Differential Dataflow, open source frameworks created by cofounder Frank McSherry at Microsoft Research, Materialize is trusted by data and engineering teams at Ramp, Pluralsight, Onward and more to build real-time data products without the cost, complexity, and development time of stream processing.

Go to materialize.com today and get 2 weeks free!Datafold: Datafold

This episode is brought to you by Datafold – a testing automation platform for data engineers that finds data quality issues before the code and data are deployed to production. Datafold leverages data-diffing to compare…

Summary

The data ecosystem has been building momentum for several years now. As a venture capital investor Matt Turck has been trying to keep track of the main trends and has compiled his findings into the MAD (ML, AI, and Data) landscape reports each year. In this episode he shares his experiences building those reports and the perspective he has gained from the exercise.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Businesses that adapt well to change grow 3 times faster than the industry average. As your business adapts, so should your data. RudderStack Transformations lets you customize your event data in real-time with your own JavaScript or Python code. Join The RudderStack Transformation Challenge today for a chance to win a $1,000 cash prize just by submitting a Transformation to the open-source RudderStack Transformation library. Visit dataengineeringpodcast.com/rudderstack today to learn more Your host is Tobias Macey and today I'm interviewing Matt Turck about his annual report on the Machine Learning, AI, & Data landscape and the insights around data infrastructure that he has gained in the process

Interview

Introduction How did you get involved in the area of data management? Can you describe what the MAD landscape report is and the story behind it?

At a high level, what is your goal in the compilation and maintenance of your landscape document? What are your guidelines for what to include in the landscape?

As the data landscape matures, how have you seen that influence the types of projects/companies that are founded?

What are the product categories that were only viable when capital was plentiful and easy to obtain? What are the product categories that you think will be swallowed by adjacent concerns, and which are likely to consolidate to remain competitive?

The rapid growth and proliferation of data tools helped establish the "Modern Data Stack" as a de-facto architectural paradigm. As we move into this phase of contraction, what are your predictions for how the "Modern Data Stack" will evolve?

Is there a different architectural paradigm that you see as growing to take its place?

How has your presentation and the types of information that you collate in the MAD landscape evolved since you first started it?~~ What are the most interesting, innovative, or unexpected product and positioning approaches that you have seen while tracking data infrastructure as a VC and maintainer of the MAD landscape? What are the most interesting, unexpected, or challenging lessons that you have learned while working on the MAD landscape over the years? What do you have planned for future iterations of the MAD landscape?

Contact Info

Website @mattturck on Twitter MAD Landscape Comments Email

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

MAD Landscape First Mark Capital Bayesian Learning AI Winter Databricks Cloud Native Landscape LUMA Scape Hadoop Ecosystem Modern Data Stack Reverse ETL Generative AI dbt Transform

Podcast Episode

Snowflake IPO Dataiku Iceberg

Podcast Episode

Hudi

Podcast Episode

DuckDB

Podcast Episode

Trino Y42

Podcast Episode

Mozart Data

Podcast Episode

Keboola MPP Database

The intro and outro music is f

Summary

The promise of streaming data is that it allows you to react to new information as it happens, rather than introducing latency by batching records together. The peril is that building a robust and scalable streaming architecture is always more complicated and error-prone than you think it's going to be. After experiencing this unfortunate reality for themselves, Abhishek Chauhan and Ashish Kumar founded Grainite so that you don't have to suffer the same pain. In this episode they explain why streaming architectures are so challenging, how they have designed Grainite to be robust and scalable, and how you can start using it today to build your streaming data applications without all of the operational headache.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Businesses that adapt well to change grow 3 times faster than the industry average. As your business adapts, so should your data. RudderStack Transformations lets you customize your event data in real-time with your own JavaScript or Python code. Join The RudderStack Transformation Challenge today for a chance to win a $1,000 cash prize just by submitting a Transformation to the open-source RudderStack Transformation library. Visit dataengineeringpodcast.com/rudderstack today to learn more Hey there podcast listener, are you tired of dealing with the headache that is the 'Modern Data Stack'? We feel your pain. It's supposed to make building smarter, faster, and more flexible data infrastructures a breeze. It ends up being anything but that. Setting it up, integrating it, maintaining it—it’s all kind of a nightmare. And let's not even get started on all the extra tools you have to buy to get it to do its thing. But don't worry, there is a better way. TimeXtender takes a holistic approach to data integration that focuses on agility rather than fragmentation. By bringing all the layers of the data stack together, TimeXtender helps you build data solutions up to 10 times faster and saves you 70-80% on costs. If you're fed up with the 'Modern Data Stack', give TimeXtender a try. Head over to dataengineeringpodcast.com/timextender where you can do two things: watch us build a data estate in 15 minutes and start for free today. Join in with the event for the global data community, Data Council Austin. From March 28-30th 2023, they'll play host to hundreds of attendees, 100 top speakers, and dozens of startups that are advancing data science, engineering and AI. Data Council attendees are amazing founders, data scientists, lead engineers, CTOs, heads of data, investors and community organizers who are all working together to build the future of data. As a listener to the Data Engineering Podcast you can get a special discount of 20% off your ticket by using the promo code dataengpod20. Don't miss out on their only event this year! Visit: dataengineeringpodcast.com/data-council today Your host is Tobias Macey and today I'm interviewing Ashish Kumar and Abhishek Chauhan about Grainite, a platform designed to give you a single place to build streaming data applications

Interview

Introduction How did you get involved in the area of data management? Can you describe what Grainite is and the story behind it? What are the personas that you are focused on addressing with Grainite? What are some of the most complex aspects of building streaming data applications in the absence of something like Grainite?

How does Grainite work to reduce that complexity?

What are some of the commonalities that you see in the teams/organizations that find their way to Grainite?

What are some of the higher-order projects that teams are able to build when they are using Grainite as a starting point vs. where they would be spending effort on a fully managed streaming architecture?

Can you describe how Grainite is architected?

How have the design and goals of the platform changed/evolved since you first started working on it?

Wh

Summary

As with all aspects of technology, security is a critical element of data applications, and the different controls can be at cross purposes with productivity. In this episode Yoav Cohen from Satori shares his experiences as a practitioner in the space of data security and how to align with the needs of engineers and business users. He also explains why data security is distinct from application security and some methods for reducing the challenge of working across different data systems.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management Join in with the event for the global data community, Data Council Austin. From March 28-30th 2023, they'll play host to hundreds of attendees, 100 top speakers, and dozens of startups that are advancing data science, engineering and AI. Data Council attendees are amazing founders, data scientists, lead engineers, CTOs, heads of data, investors and community organizers who are all working together to build the future of data. As a listener to the Data Engineering Podcast you can get a special discount of 20% off your ticket by using the promo code dataengpod20. Don't miss out on their only event this year! Visit: dataengineeringpodcast.com/data-council today RudderStack makes it easy for data teams to build a customer data platform on their own warehouse. Use their state of the art pipelines to collect all of your data, build a complete view of your customer and sync it to every downstream tool. Sign up for free at dataengineeringpodcast.com/rudder Hey there podcast listener, are you tired of dealing with the headache that is the 'Modern Data Stack'? We feel your pain. It's supposed to make building smarter, faster, and more flexible data infrastructures a breeze. It ends up being anything but that. Setting it up, integrating it, maintaining it—it’s all kind of a nightmare. And let's not even get started on all the extra tools you have to buy to get it to do its thing. But don't worry, there is a better way. TimeXtender takes a holistic approach to data integration that focuses on agility rather than fragmentation. By bringing all the layers of the data stack together, TimeXtender helps you build data solutions up to 10 times faster and saves you 70-80% on costs. If you're fed up with the 'Modern Data Stack', give TimeXtender a try. Head over to dataengineeringpodcast.com/timextender where you can do two things: watch us build a data estate in 15 minutes and start for free today. Your host is Tobias Macey and today I'm interviewing Yoav Cohen about the challenges that data teams face in securing their data platforms and how that impacts the productivity and adoption of data in the organization

Interview

Introduction How did you get involved in the area of data management? Data security is a very broad term. Can you start by enumerating some of the different concerns that are involved? How has the scope and complexity of implementing security controls on data systems changed in recent years?

In your experience, what is a typical number of data locations that an organization is trying to manage access/permissions within?

What are some of the main challenges that data/compliance teams face in establishing and maintaining security controls?

How much of the problem is technical vs. procedural/organizational?

As a vendor in the space, how do you think about the broad categories/boundary lines for the different elements of data security? (e.g. masking vs. RBAC, etc.)

What are the different layers that are best suited to managing each of those categories? (e.g. masking and encryption in storage layer, RBAC in warehouse, etc.)

What are some of the ways that data security and organizational productivity are at odds with each other?

What are some of the shortcuts that you see teams and individuals taking to address the productivity hit from security controls?

What are some of the methods that you have found to be most effective at mitigating or even improving productivity impacts through security controls?

How does up-front design of the security layers improve the final outcome vs. trying to bolt on security after the platform is already in use? How can education about the motivations for different security practices improve compliance and user experience?

What are the most interesting, innovative, or unexpected ways that you have seen data teams align data security and productivity? What are the most interesting, unexpected, or challenging lessons that you have learned while working on data security technology? What are the areas of data security that still need improvements?

Contact Info

Yoav Cohen

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don't forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you've learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

Satori

Podcast Episode

Data Masking RBAC == Role Based Access Control ABAC == Attribute Based Access Control Gartner Data Security Platform Report

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Sponsored By: Rudderstack: Rudderstack Businesses that adapt well to change grow 3 times faster than the industry average. As your business adapts, so should your data. RudderStack Transformations lets you customize your event data in real-time with your own JavaScript or Python code. Join The RudderStack Transformation Challenge today for a chance to win a $1,000 cash prize just by submitting a Transformation to the open-source RudderStack Transformation library. Visit RudderStack.com/DEP to learn moreData Council: Data Council Logo Join us at the event for the global data community, Data Council Austin. From March 28-30th 2023, we'll play host to hundreds of attendees, 100 top speakers, and dozens of startups that are advancing data science, engineering and AI. Data Council attendees are amazing founders, data scientists, lead engineers, CTOs, heads of data, investors and community organizers who are all working together to build the future of data. As a listener to the Data Engineering Podcast you can get a special discount off tickets by using the promo code dataengpod20. Don't miss out on our only event this year! Visit: dataengineeringpodcast.com/data-council Promo Code: dataengpod20TimeXtender: TimeXtender Logo TimeXtender is a holistic, metadata-driven solution for data integration, optimized for agility. TimeXtender provides all the features you need to build a future-proof infrastructure for ingesting, transforming, modelling, and delivering clean, reliable data in the fastest, most efficient way possible.

You can't optimize for everything all at once. That's why we take a holistic approach to data integration that optimises for agility instead of fragmentation. By unifying each layer of the data stack, TimeXtender empowers you to build data solutions 10x faster while reducing costs by 70%-80%. We do this for one simple reason: because time matters.

Go to dataengineeringpodcast.com/timextender today to get started for free!Support Data Engineering Podcast

Summary Python has grown to be one of the top languages used for all aspects of data, from collection and cleaning, to analysis and machine learning. Along with that growth has come an explosion of tools and engines that help power these workflows, which introduces a great deal of complexity when scaling from single machines and exploratory development to massively parallel distributed computation. In answer to that challenge the Fugue project offers an interface to automatically translate across Pandas, Spark, and Dask execution environments without having to modify your logic. In this episode core contributor Kevin Kho explains how the slight differences in the underlying engines can lead to big problems, how Fugue works to hide those differences from the developer, and how you can start using it in your own work today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription The only thing worse than having bad data is not knowing that you have it. With Bigeye’s data observability platform, if there is an issue with your data or data pipelines you’ll know right away and can get it fixed before the business is impacted. Bigeye let’s data teams measure, improve, and communicate the quality of your data to company stakeholders. With complete API access, a user-friendly interface, and automated yet flexible alerting, you’ve got everything you need to establish and maintain trust in your data. Go to dataengineeringpodcast.com/bigeye today to sign up and start trusting your analyses. Every data project starts with collecting the information that will provide answers to your questions or inputs to your models. The web is the largest trove of information on the planet and Oxylabs helps you unlock its potential. With the Oxylabs scraper APIs you can extract data from even javascript heavy websites. Combined with their residential proxies you can be sure that you’ll have reliable and high quality data whenever you need it. Go to dataengineeringpodcast.com/oxylabs today and use code DEP25 to get your special discount on residential proxies. Your host is Tobias Macey and today I’m interviewing Kevin Kho about Fugue, a library that offers a unified interface for distributed computing that lets users execute Python, pandas, and SQL code on Spark and Dask without rewrites

Interview

Introduction How did you get involved in the area of data management? Can you describe what Fugue is and the story behind it? What are the core goals of the Fugue project? Who are the target users for Fugue and how does that influence the feature priorities and API design? How does Fugue compare to projects such as Modin, etc. for abst

Summary One of the perennial challenges of data analytics is having a consistent set of definitions, along with a flexible and performant API endpoint for querying them. In this episode Artom Keydunov and Pavel Tiunov share their work on Cube.js and the various ways that it is being used in the open source community.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Your host is Tobias Macey and today I’m interviewing Artyom Keydunov and Pavel Tiunov about Cube.js a framework for building analytics APIs to power your applications and BI dashboards

Interview

Introduction How did you get involved in the area of data management? Can you describe what Cube is and the story behind it? What are the main use cases and platform architectures that you are focused on?

Who are the target personas that will be using and managing Cube.js?

The name comes from the concept of an OLAP cube. Can you discuss the applications of OLAP cubes and their role in the current state of the data ecosystem?

How does the idea of an OLAP cube compare to the recent focus on a dedicated metrics layer?

What are the pieces of a data platform that might be replaced by Cube.js? Can you describe the design and architecture of the Cube platform?

How has the focus and target use case for the Cube platform evolved since you first started working on it?

One of the perpetually hard problems in computer science is cache management. How have you approached that challenge in the pre-aggregation layer of the Cube framework? What is your overarching design philosophy for the API of the Cube system? Can you talk through the workflow of someone building a cube and querying it from a downstream system?

What do the iteration cycles look like as you go from initial proof of concept to a more sophisticated usage of Cube.js

In this episode, Bryce and Conor talk about each of their favorite data structures. Date Recorded: 2020-11-28 Date Released: 2020-12-04 C++ | Containers OCaml | Containers Java | Collections Python | Collections Kotlin | Collections Scala | Collections Rust | Collections Go | Collections Haskell | Collections TS | Collections Ruby | Collections JS | Collections F# | Collection Types Racket | Data Structures Clojure | Data Structures What do you mean by “cache friendly”? - Björn Fahller - code::dive 2019Alan J. Perlis’ Epigrams on Programmingstd::vectorP1072 basic_string::resize_default_initstd::arraystd::unique_ptr (Array Specialization)P0316 allocate_unique and allocator_deletethurst::allocate_uniqueIntro Song Info Miss You by Sarah Jansen https://soundcloud.com/sarahjansenmusic Creative Commons — Attribution 3.0 Unported — CC BY 3.0 Free Download / Stream: http://bit.ly/l-miss-you Music promoted by Audio Library https://youtu.be/iYYxnasvfx8

podcast_episode
by Val Kroll , Julie Hoyer , Tim Wilson (Analytics Power Hour - Columbus (OH) , Mike Robins (Poplin Data) , Moe Kiss (Canva) , Michael Helbling (Search Discovery)

Once upon a time, website behavioral data was extracted from the log files of web servers. That data was messy to work with and missing some information that analysts really wanted. This was the OG "server-side" data collection. Then, the JavaScript page tag arrived on the scene, and the data became richer and cleaner and easier to implement. That data was collected by tags firing in the user's browser (which was called "client-side" data collection). But then ad blockers and browser quirks and cross-device behavior turned out to introduce pockets of unreliability into THAT data. And now here we are. What was old is now somewhat new again, and there is a lot to be unpacked with the ins and outs and tradeoffs of client-side vs. server-side data collection. On this episode, Mike Robins from Poplin Data joined the gang to explore the topic from various angles. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

Are you down with ITP? What about ETP? Are you pretty sure that the decline in returning visitors to your site that has everyone in a tizzy is largely due to increasingly restrictive cookie handling by browsers? Do you really, really, REALLY want Google, Apple, Mozilla, and even Microsoft to get on the same page when it comes to cookie handling and JavaScript subtleties? So many questions! Lucky for us (and you!), Measure Slack legend (and L.L. Bean Senior Programmer/Analyst) Cory Underwood has some answers. Or, at least, he will depress you in delightful ways. For complete show notes, including links to items mentioned in this episode, a transcript of the show, and an update on ITP 2.3 from Cory, visit the show page.

A simple recipe for a delicious analytics platform: combine 3 cups of data schema with a pinch of JavaScript in a large pot of cloud storage. Bake in the deployment oven for a couple of months, and savory insights will emerge. Right? Why does this recipe have both 5-star and 1-star ratings?! On this episode, long-standing digital analytics maven June Dershewitz, Director of Analytics at Twitch, drops by the podcast's analytics kitchen to discuss the relative merits of building versus buying an analytics platform. Or, of course, doing something in between!

The episode was originally 3.5 hours long, but we edited out most of Michael's tangents into gaming geekdown, which brought the run-time down to a more normal length.

For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

podcast_episode
by Val Kroll , Julie Hoyer , Simo Ahava (NetBooster, Helsinki - Finland) , Tim Wilson (Analytics Power Hour - Columbus (OH) , Moe Kiss (Canva) , Michael Helbling (Search Discovery)

Are you deeply knowledgable in JavaScript, R, the DOM, Python, AWS, jQuery, Google Cloud Platform, and SQL? Good for you! If you're not, should you be? What does "technical" mean, anyway? And, is it even possible for an analyst to dive into all of these different areas? English philosophy expert The Notorious C.M.O. (aka, Simo Ahava) returns to the show to share his thoughts on the subject in this episode. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

Summary

Building an ETL pipeline is a common need across businesses and industries. It’s easy to get one started but difficult to manage as new requirements are added and greater scalability becomes necessary. Rather than duplicating the efforts of other engineers it might be best to use a hosted service to handle the plumbing so that you can focus on the parts that actually matter for your business. In this episode CTO and co-founder of Alooma, Yair Weinberger, explains how the platform addresses the common needs of data collection, manipulation, and storage while allowing for flexible processing. He describes the motivation for starting the company, how their infrastructure is architected, and the challenges of supporting multi-tenancy and a wide variety of integrations.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Yair Weinberger about Alooma, a company providing data pipelines as a service

Interview

Introduction How did you get involved in the area of data management? What is Alooma and what is the origin story? How is the Alooma platform architected?

I want to go into stream VS batch here What are the most challenging components to scale?

How do you manage the underlying infrastructure to support your SLA of 5 nines? What are some of the complexities introduced by processing data from multiple customers with various compliance requirements?

How do you sandbox user’s processing code to avoid security exploits?

What are some of the potential pitfalls for automatic schema management in the target database? Given the large number of integrations, how do you maintain the

What are some challenges when creating integrations, isn’t it simply conforming with an external API?

For someone getting started with Alooma what does the workflow look like? What are some of the most challenging aspects of building and maintaining Alooma? What are your plans for the future of Alooma?

Contact Info

LinkedIn @yairwein on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Alooma Convert Media Data Integration ESB (Enterprise Service Bus) Tibco Mulesoft ETL (Extract, Transform, Load) Informatica Microsoft SSIS OLAP Cube S3 Azure Cloud Storage Snowflake DB Redshift BigQuery Salesforce Hubspot Zendesk Spark The Log: What every software engineer should know about real-time data’s unifying abstraction by Jay Kreps RDBMS (Relational Database Management System) SaaS (Software as a Service) Change Data Capture Kafka Storm Google Cloud PubSub Amazon Kinesis Alooma Code Engine Zookeeper Idempotence Kafka Streams Kubernetes SOC2 Jython Docker Python Javascript Ruby Scala PII (Personally Identifiable Information) GDPR (General Data Protection Regulation) Amazon EMR (Elastic Map Reduce) Sequoia Capital Lightspeed Investors Redis Aerospike Cassandra MongoDB

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

podcast_episode
by Tim Wilson (Analytics Power Hour - Columbus (OH) , Michael Helbling (Search Discovery)

Step right up! Step right up! We've got your org charts here! If an analyst falls in the woods, and she reports into a hub-and-spoke model, is the result best illustrated with a 3D pie chart? Join Michael and Tim as they conclude that, at the end of the day, effective communication is imperative regardless of where the analysts sit organizationally. And, because, "Why not?" ride along on a digression about the product management of analytics platforms within the organization! Miscellany referenced in this episode include: 10 Tips to Maximize Your JavaScript Debugging Experience, The Comedians of Comedy, and Extras.