talk-data.com talk-data.com

Topic

SQL

Structured Query Language (SQL)

database_language data_manipulation data_definition programming_language

780

tagged

Activity Trend

107 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Engineering Books ×
Pro SQL Server 2019 Wait Statistics: A Practical Guide to Analyzing Performance in SQL Server

Here is a practical guide for analyzing and troubleshooting SQL Server performance using wait statistics. Learn to identify precisely why your queries are running slowly. Measure the amount of time consumed by each bottleneck so that you can focus attention on making the largest improvements first. This edition is updated to cover analysis of wait statistics inside Query Store, the CXCONSUMER wait event, and to be current with SQL Server 2019. Whether you are new to wait statistics, or already familiar with them, this book provides a deeper understanding on how wait statistics are generated and what they can mean for your SQL Server instance’s performance. Pro SQL Server 2019 Wait Statistics goes beyond the most common wait types into the more complex and performance-threatening wait types. You’ll learn about per-query wait statistics and session-based wait statistics, and the types of problems they each can help you solve. The different wait types are categorized by their area of impact, including CPU, IO, Lock, and many more. The book presents clear examples to help you gain practical knowledge of why and how specific wait times increase or decrease, and how they impact your SQL Server’s performance. After reading this book you won’t want to be without the valuable information that wait statistics provide regarding where you should be spending your limited tuning time to maximize performance and value to your business. What You'll Learn Identify resource bottlenecks in a running SQL Server instance Locate wait statistics information inside DMVs and Query Store Analyze the root cause of sub-optimal performance Diagnose I/O contention and locking contention Benchmark SQL Server performance Lower the wait time of the most popular wait types Who This Book Is For Database administrators who want to identify and resolve performance bottlenecks, those who want to learn more about how the SQL Server engine accesses and uses resources inside SQL Server, and administrators concerned with achieving—and knowing they have achieved—optimal performance

Pro Oracle SQL Development: Best Practices for Writing Advanced Queries

Write SQL statements that are more powerful, simpler, and faster using Oracle SQL and its full range of features. This book provides a clearer way of thinking about SQL by building sets, and provides practical advice for using complex features while avoiding anti-patterns that lead to poor performance and wrong results. Relevant theories, real-world best practices, and style guidelines help you get the most out of Oracle SQL. Pro Oracle SQL Development is for anyone who already knows Oracle SQL and is ready to take their skills to the next level. Many developers, analysts, testers, and administrators use Oracle databases frequently, but their queries are limited because they do not have the knowledge, experience, or right environment to help them take full advantage of Oracle’s advanced features. This book will inspire you to achieve more with your Oracle SQL statements through tips for creating your own style for writing simple, yet powerful, SQL. It teaches you how to think about and solve performance problems in Oracle SQL, and covers advanced topics and shows you how to become an Oracle expert. What You'll Learn Understand the power of Oracle SQL and where to apply it Create a database development environment that is simple, scalable, and conducive to learning Solve complex problems that were previously solved in a procedural language Write large Oracle SQL statements that are powerful, simple, and fast Apply coding styles to make your SQL statements more readable Tune large Oracle SQL statements to eliminate and avoid performance problems Who This Book Is For Developers, testers, analysts, and administrators who want to harness the full power of Oracle SQL to solve their problems as simply and as quickly as possible. For traditional database professionals the book offers new ways of thinking about the language they have used for so long. For modern full stack developers the book explains how a database can be much more than simply a place to store data.

Learn T-SQL Querying

Dive into the world of T-SQL with 'Learn T-SQL Querying,' a book designed to enhance your database querying skills and help you master Microsoft's SQL Server and Azure SQL Database. Through this guide, you'll explore best practices, learn advanced techniques for analyzing execution plans, and create efficient T-SQL queries. What this Book will help me do Understand the fundamentals of query optimization to write performant T-SQL queries. Analyze query execution plans to identify and troubleshoot performance issues effectively. Utilize dynamic management views and functions to monitor and optimize query performance. Implement features like Query Store to streamline troubleshooting and maintain performance changes. Avoid common T-SQL anti-patterns and embrace best practices to ensure scalable query design. Author(s) Pedro Lopes and None Lahoud bring years of expertise in SQL Server and database systems. Pedro has extensive experience as a database engineer, where he specializes in query processing and optimization. None has a deep understanding of T-SQL development, focusing on practical solutions. Together, they provide in-depth insights and actionable advice. Who is it for? This book is perfect for database administrators, database developers, and data analysts at any level looking to improve their T-SQL expertise. Beginners will gain foundational skills in T-SQL querying, while experienced professionals will find advanced strategies for optimizing SQL Server performance. Readers aiming to master both practical querying and troubleshooting will benefit the most.

Data Science and Engineering at Enterprise Scale

As enterprise-scale data science sharpens its focus on data-driven decision making and machine learning, new tools have emerged to help facilitate these processes. This practical ebook shows data scientists and enterprise developers how the notebook interface, Apache Spark, and other collaboration tools are particularly well suited to bridge the communication gap between their teams. Through a series of real-world examples, author Jerome Nilmeier demonstrates how to generate a model that enables data scientists and developers to share ideas and project code. You’ll learn how data scientists can approach real-world business problems with Spark and how developers can then implement the solution in a production environment. Dive deep into data science technologies, including Spark, TensorFlow, and the Jupyter Notebook Learn how Spark and Python notebooks enable data scientists and developers to work together Explore how the notebook environment works with Spark SQL for structured data Use notebooks and Spark as a launchpad to pursue supervised, unsupervised, and deep learning data models Learn additional Spark functionality, including graph analysis and streaming Explore the use of analytics in the production environment, particularly when creating data pipelines and deploying code

SQL All-In-One For Dummies, 3rd Edition

The latest on SQL databases SQL All -In-One For Dummies, 3rd Edition, is a one-stop shop for everything you need to know about SQL and SQL-based relational databases. Everyone from database administrators to application programmers and the people who manage them will find clear, concise explanations of the SQL language and its many powerful applications. With the ballooning amount of data out there, more and more businesses, large and small, are moving from spreadsheets to SQL databases like Access, Microsoft SQL Server, Oracle databases, MySQL, and PostgreSQL. This compendium of information covers designing, developing, and maintaining these databases. Cope with any issue that arises in SQL database creation and management Get current on the newest SQL updates and capabilities Reference information on querying SQL-based databases in the SQL language Understand relational databases and their importance to today’s organizations SQL All-In-One For Dummies is a timely update to the popular reference for readers who want detailed information about SQL databases and queries.

Hands-On Big Data Analytics with PySpark

Dive into the exciting world of big data analytics with 'Hands-On Big Data Analytics with PySpark'. This practical guide offers you the tools and knowledge to tackle massive datasets using PySpark. By exploring real-world examples, you'll learn to unleash the power of distributed systems to analyze and manipulate data at scale. What this Book will help me do Master using PySpark to handle large and complex datasets efficiently and effectively. Develop skills to optimize Spark programs using best practices like reducing shuffle operations. Learn to set up a PySpark environment, process data from platforms like HDFS, Hive, and S3. Enhance your data analytics capabilities by implementing powerful SQL queries and data visualizations. Understand testing and debugging techniques to build reliable, production-quality data pipelines. Author(s) Authored by Rudy Lai and Bartłomiej Potaczek, both seasoned data engineers and authors in the big data field. Rudy and Bartłomiej bring their extensive experience working with distributed systems and scalable data architectures into this book. Their approach is hands-on, focusing on real-world applications and best practices. Who is it for? This book is tailored for data scientists, engineers, and developers eager to advance their big data analytics capabilities. Whether you're new to big data or experienced with other analytics frameworks, this book will equip you with practical knowledge to utilize PySpark for scalable data solutions.

PROC SQL, 3rd Edition

PROC SQL: Beyond the Basics Using SAS®, Third Edition, is a step-by-step, example-driven guide that helps readers master the language of PROC SQL. Packed with analysis and examples illustrating an assortment of PROC SQL options, statements, and clauses, this book not only covers all the basics, but it also offers extensive guidance on complex topics such as set operators and correlated subqueries. Programmers at all levels will appreciate Kirk Lafler’s easy-to-follow examples, clear explanations, and handy tips to extend their knowledge of PROC SQL. This third edition explores new and powerful features in SAS® 9.4, including topics such as: IFC and IFN functions nearest neighbor processing the HAVING clause indexes It also features two completely new chapters on fuzzy matching and data-driven programming. Delving into the workings of PROC SQL with greater analysis and discussion, PROC SQL: Beyond the Basics Using SAS®, Third Edition, explores this powerful database language using discussion and numerous real-world examples.

PySpark SQL Recipes: With HiveQL, Dataframe and Graphframes

Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You’ll also discover how to solve problems in graph analysis using graphframes. On completing this book, you’ll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. What You Will Learn Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing Who This Book Is For Data scientists, Python programmers, and SQL programmers.

Apache Spark Quick Start Guide

Dive into the world of scalable data processing with the "Apache Spark Quick Start Guide." This book offers a foundational introduction to Spark, empowering readers to harness its capabilities for big data processing. With clear explanations and hands-on examples, you'll learn to implement Spark applications that handle complex data tasks efficiently. What this Book will help me do Understand and implement Spark's RDDs and DataFrame APIs to process large datasets effectively. Set up a local development environment for Spark-based projects. Develop skills to debug and optimize slow-performing Spark applications. Harness built-in modules of Spark for SQL, streaming, and machine learning applications. Adopt best practices and optimization techniques for high-performance Spark applications. Author(s) Shrey Mehrotra is a seasoned software developer with expertise in big data technologies, particularly Apache Spark. With years of hands-on industry experience, Shrey focuses on making complex technical concepts accessible to all. Through his writing, he aims to share clear, practical guidance for developers of all levels. Who is it for? This guide is perfect for big data enthusiasts and professionals looking to learn Apache Spark's capabilities from scratch. It's aimed at data engineers interested in optimizing application performance and data scientists wanting to integrate machine learning with Spark. A basic familiarity with either Scala, Python, or Java is recommended.

Dynamic SQL: Applications, Performance, and Security in Microsoft SQL Server

Take a deep dive into the many uses of dynamic SQL in Microsoft SQL Server. This edition has been updated to use the newest features in SQL Server 2016 and SQL Server 2017 as well as incorporating the changing landscape of analytics and database administration. Code examples have been updated with new system objects and functions to improve efficiency and maintainability. Executing dynamic SQL is key to large-scale searching based on user-entered criteria. Dynamic SQL can generate lists of values and even code with minimal impact on performance. Dynamic SQL enables dynamic pivoting of data for business intelligence solutions as well as customizing of database objects. Yet dynamic SQL is feared by many due to concerns over SQL injection or code maintainability. Dynamic SQL: Applications, Performance, and Security in Microsoft SQL Server helps you bring the productivity and user-satisfaction of flexible and responsive applications to your organization safely and securely. Your organization’s increased ability to respond to rapidly changing business scenarios will build competitive advantage in an increasingly crowded and competitive global marketplace. With a focus on new applications and modern database architecture, this edition illustrates that dynamic SQL continues to evolve and be a valuable tool for administration, performance optimization, and analytics. What You'ill Learn Build flexible applications that respond to changing business needs Take advantage of creative, innovative, and productive uses of dynamic SQL Know about SQL injection and be confident in your defenses against it Address performance concerns in stored procedures and dynamic SQL Troubleshoot and debug dynamic SQL to ensure correct results Automate your administration of features within SQL Server Who This Book is For Developers and database administrators looking to hone and build their T-SQL coding skills. The book is ideal for developers wanting to plumb the depths of application flexibility and troubleshoot performance issues involving dynamic SQL. The book is also ideal for programmers wanting to learn what dynamic SQL is about and how it can help them deliver competitive advantage to their organizations.

Apache Spark 2: Data Processing and Real-Time Analytics

Build efficient data flow and machine learning programs with this flexible, multi-functional open-source cluster-computing framework Key Features Master the art of real-time big data processing and machine learning Explore a wide range of use-cases to analyze large data Discover ways to optimize your work by using many features of Spark 2.x and Scala Book Description Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. This Learning Path includes content from the following Packt products: Mastering Apache Spark 2.x by Romeo Kienzler Scala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar Alla Apache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbook What you will learn Get to grips with all the features of Apache Spark 2.x Perform highly optimized real-time big data processing Use ML and DL techniques with Spark MLlib and third-party tools Analyze structured and unstructured data using SparkSQL and GraphX Understand tuning, debugging, and monitoring of big data applications Build scalable and fault-tolerant streaming applications Develop scalable recommendation engines Who this book is for If you are an intermediate-level Spark developer looking to master the advanced capabilities and use-cases of Apache Spark 2.x, this Learning Path is ideal for you. Big data professionals who want to learn how to integrate and use the features of Apache Spark and build a strong big data pipeline will also find this Learning Path useful. To grasp the concepts explained in this Learning Path, you must know the fundamentals of Apache Spark and Scala.

Apache Superset Quick Start Guide

Apache Superset Quick Start Guide teaches you how to leverage Apache Superset to create interactive and insightful data visualizations. With this book, you'll understand how to integrate Superset with popular databases and build user-friendly dashboards tailored for business intelligence needs. What this Book will help me do Set up and configure Apache Superset for data visualization tasks. Integrate data from SQL databases into Superset for dashboards. Design dashboards tailored to represent business metrics and insights. Use Superset's visualization techniques to explore and present various datasets. Understand and apply user role management and security features in Superset. Author(s) None Shekhar is an experienced data visualization and business intelligence specialist with years of experience in working with Apache Superset. They have written several guides on utilizing open-source tools for enterprise needs. Their technical expertise and approachable writing style make this guide practical and engaging. Who is it for? This book is geared towards data analysts, business intelligence professionals, and developers. Beginners to Superset can quickly grasp the fundamentals, while those with prior experience in data visualization will appreciate the advanced techniques. It's perfect for anyone looking to enhance their data storytelling and dashboard design skills.

Practical Apache Spark: Using the Scala API

Work with Apache Spark using Scala to deploy and set up single-node, multi-node, and high-availability clusters. This book discusses various components of Spark such as Spark Core, DataFrames, Datasets and SQL, Spark Streaming, Spark MLib, and R on Spark with the help of practical code snippets for each topic. Practical Apache Spark also covers the integration of Apache Spark with Kafka with examples. You’ll follow a learn-to-do-by-yourself approach to learning – learn the concepts, practice the code snippets in Scala, and complete the assignments given to get an overall exposure. On completion, you’ll have knowledge of the functional programming aspects of Scala, and hands-on expertise in various Spark components. You’ll also become familiar with machine learning algorithms with real-time usage. What You Will Learn Discover the functional programming features of Scala Understand the completearchitecture of Spark and its components Integrate Apache Spark with Hive and Kafka Use Spark SQL, DataFrames, and Datasets to process data using traditional SQL queries Work with different machine learning concepts and libraries using Spark's MLlib packages Who This Book Is For Developers and professionals who deal with batch and stream data processing.

Hands-On Big Data Modeling

This book, Hands-On Big Data Modeling, provides you with practical guidance on data modeling techniques, focusing particularly on the challenges of big data. You will learn the concepts behind various data models, explore tools and platforms for efficient data management, and gain hands-on experience with structured and unstructured data. What this Book will help me do Master the fundamental concepts of big data and its challenges. Explore advanced data modeling techniques using SQL, Python, and R. Design effective models for structured, semi-structured, and unstructured data types. Apply data modeling to real-world datasets like social media and sensor data. Optimize data models for performance and scalability in various big data platforms. Author(s) The authors of this book are experienced data architects and engineers with a strong background in developing scalable data solutions. They bring their collective expertise to simplify complex concepts in big data modeling, ensuring readers can effectively apply these techniques in their projects. Who is it for? This book is intended for data architects, business intelligence professionals, and any programmer interested in understanding and applying big data modeling concepts. If you are already familiar with basic data management principles and want to enhance your skills, this book is perfect for you. You will learn to tackle real-world datasets and create scalable models. Additionally, it is suitable for professionals transitioning to working with big data frameworks.

Hands-On Data Science with SQL Server 2017

In "Hands-On Data Science with SQL Server 2017," you will discover how to implement end-to-end data analysis workflows, leveraging SQL Server's robust capabilities. This book guides you through collecting, cleaning, and transforming data, querying for insights, creating compelling visualizations, and even constructing predictive models for sophisticated analytics. What this Book will help me do Grasp the essential data science processes and how SQL Server supports them. Conduct data analysis and create interactive visualizations using Power BI. Build, train, and assess predictive models using SQL Server tools. Integrate SQL Server with R, Python, and Azure for enhanced functionality. Apply best practices for managing and transforming big data with SQL Server. Author(s) Marek Chmel and Vladimír Mužný bring their extensive experience in data science and database management to this book. Marek is a seasoned database specialist with a strong background in SQL, while Vladimír is known for his instructional expertise in analytics and data manipulation. Together, they focus on providing actionable insights and practical examples tailored for data professionals. Who is it for? This book is an ideal resource for aspiring and seasoned data scientists, data analysts, and database professionals aiming to deepen their expertise in SQL Server for data science workflows. Beginners with fundamental SQL knowledge will find it a guided entry into data science applications. It is especially suited for those who aim to implement data-driven solutions in their roles while leveraging SQL's capabilities.

Securing SQL Server: DBAs Defending the Database

Protect your data from attack by using SQL Server technologies to implement a defense-in-depth strategy for your database enterprise. This new edition covers threat analysis, common attacks and countermeasures, and provides an introduction to compliance that is useful for meeting regulatory requirements such as the GDPR. The multi-layered approach in this book helps ensure that a single breach does not lead to loss or compromise of confidential, or business sensitive data. Database professionals in today’s world deal increasingly with repeated data attacks against high-profile organizations and sensitive data. It is more important than ever to keep your company’s data secure. Securing SQL Server demonstrates how developers, administrators and architects can all play their part in the protection of their company’s SQL Server enterprise. This book not only provides a comprehensive guide to implementing the security model in SQLServer, including coverage of technologies such as Always Encrypted, Dynamic Data Masking, and Row Level Security, but also looks at common forms of attack against databases, such as SQL Injection and backup theft, with clear, concise examples of how to implement countermeasures against these specific scenarios. Most importantly, this book gives practical advice and engaging examples of how to defend your data, and ultimately your job, against attack and compromise. What You'll Learn Perform threat analysis Implement access level control and data encryption Avoid non-reputability by implementing comprehensive auditing Use security metadata to ensure your security policies are enforced Mitigate the risk of credentials being stolen Put countermeasures in place against common forms of attack Who This Book Is For Database administrators who need to understand and counteract the threat of attacks against their company’s data, and useful for SQL developers and architects

Pro SQL Server on Linux: Including Container-Based Deployment with Docker and Kubernetes

Get SQL Server up and running on the Linux operating system and containers. No database professional managing or developing SQL Server on Linux will want to be without this deep and authoritative guide by one of the most respected experts on SQL Server in the industry. Get an inside look at how SQL Server for Linux works through the eyes of an engineer on the team that made it possible. Microsoft SQL Server is one of the leading database platforms in the industry, and SQL Server 2017 offers developers and administrators the ability to run a database management system on Linux, offering proven support for enterprise-level features and without onerous licensing terms. Organizations invested in Microsoft and open source technologies are now able to run a unified database platform across all their operating system investments. Organizations are further able to take full advantage of containerization through popular platforms such as Docker and Kubernetes. Pro SQL Server on Linux walks you through installing and configuring SQL Server on the Linux platform. The author is one of the principal architects of SQL Server for Linux, and brings a corresponding depth of knowledge that no database professional or developer on Linux will want to be without. Throughout this book are internals of how SQL Server on Linux works including an in depth look at the innovative architecture. The book covers day-to-day management and troubleshooting, including diagnostics and monitoring, the use of containers to manage deployments, and the use of self-tuning and the in-memory capabilities. Also covered are performance capabilities, high availability, and disaster recovery along with security and encryption. The book covers the product-specific knowledge to bring SQL Server and its powerful features to life on the Linux platform, including coverage of containerization through Docker and Kubernetes. What You'll Learn Learn about the history and internal of the unique SQL Server on Linux architecture. Install and configure Microsoft’s flagship database product on the Linux platform Manage your deployments using container technology through Docker and Kubernetes Know the basics of building databases, the T-SQL language, and developing applications against SQL Server on Linux Use tools and features to diagnose, manage, and monitor SQL Server on Linux Scale your application by learning the performance capabilities of SQL Server Deliver high availability and disaster recovery to ensure business continuity Secure your database from attack, and protect sensitive data through encryption Take advantage of powerful features such as Failover Clusters, Availability Groups, In-Memory Support, and SQL Server’sSelf-Tuning Engine Learn how to migrate your database from older releases of SQL Server and other database platforms such as Oracle and PostgreSQL Build and maintain schemas, and perform management tasks from both GUI and command line Who This Book Is For Developers and IT professionals who are new to SQL Server and wish to configure it on the Linux operating system. This book is also useful to those familiar with SQL Server on Windows who want to learn the unique aspects of managing SQL Server on the Linux platform and Docker containers. Readers should have a grasp of relational database concepts and be comfortable with the SQL language.

Redash v5 Quick Start Guide

In the 'Redash v5 Quick Start Guide', you'll learn everything you need to master the Redash data visualization platform and confidently create compelling dashboards. This book covers how to connect to different data sources, use SQL to query data, and design and share insightful visualizations. What this Book will help me do Understand how to install, configure, and troubleshoot Redash for your data projects. Gain skills in managing user roles and permissions to ensure secure data collaboration. Learn to connect Redash to various data sources and fetch, process, and handle data. Master the creation of advanced visualizations to effectively present complex data. Develop proficiency in utilizing the Redash API for integrating programmatic interactions. Author(s) None Leibzon is a recognized expert in data visualization and Business Intelligence tools, with years of experience working with data-driven systems. Drawing from his deep practical knowledge of Redash and its applications, None has crafted this guide to be accessible and highly practical. His goal is to enable learners and professionals to unlock the power of data storytelling through intuitive and actionable visualization. Who is it for? If you're a Data Analyst, BI professional, or Data Developer with basic SQL skills, this book is tailored for you. It assumes no prior knowledge of Redash but benefits those who understand fundamental Business Intelligence concepts. Whether you're looking to create your first visualization or streamline data collaboration, this guide will help you achieve your goals.

Kafka Streams in Action

Kafka Streams in Action teaches you everything you need to know to implement stream processing on data flowing into your Kafka platform, allowing you to focus on getting more from your data without sacrificing time or effort. About the Technology Not all stream-based applications require a dedicated processing cluster. The lightweight Kafka Streams library provides exactly the power and simplicity you need for message handling in microservices and real-time event processing. With the Kafka Streams API, you filter and transform data streams with just Kafka and your application. About the Book Kafka Streams in Action teaches you to implement stream processing within the Kafka platform. In this easy-to-follow book, you’ll explore real-world examples to collect, transform, and aggregate data, work with multiple processors, and handle real-time events. You’ll even dive into streaming SQL with KSQL! Practical to the very end, it finishes with testing and operational aspects, such as monitoring and debugging. What's Inside Using the KStreams API Filtering, transforming, and splitting data Working with the Processor API Integrating with external systems About the Reader Assumes some experience with distributed systems. No knowledge of Kafka or streaming applications required. About the Author Bill Bejeck is a Kafka Streams contributor and Confluent engineer with over 15 years of software development experience. Quotes A great way to learn about Kafka Streams and how it is a key enabler of event-driven applications. - From the Foreword by Neha Narkhede, Cocreator of Apache Kafka A comprehensive guide to Kafka Streams—from introduction to production! - Bojan Djurkovic, Cvent Bridges the gap between message brokering and real-time streaming analytics. - Jim Mantheiy Jr., Next Century Valuable both as an introduction to streams as well as an ongoing reference. - Robin Coe, TD Bank

SQL Server 2017 Query Performance Tuning: Troubleshoot and Optimize Query Performance

Identify and fix causes of poor performance. You will learn Query Store, adaptive execution plans, and automated tuning on the Microsoft Azure SQL Database platform. Anyone responsible for writing or creating T-SQL queries will find valuable the insight into bottlenecks, including how to recognize them and eliminate them. This book covers the latest in performance optimization features and techniques and is current with SQL Server 2017. If your queries are not running fast enough and you’re tired of phone calls from frustrated users, then this book is the answer to your performance problems. SQL Server 2017 Query Performance Tuning is about more than quick tips and fixes. You’ll learn to be proactive in establishing performance baselines using tools such as Performance Monitor and Extended Events. You’ll recognize bottlenecks and defuse them before the phone rings. You’ll learn some quick solutions too, but emphasis is on designing for performance and getting it right. The goal is to head off trouble before it occurs. What You'll Learn Use Query Store to understand and easily change query performance Recognize and eliminate bottlenecks leading to slow performance Deploy quick fixes when needed, following up with long-term solutions Implement best practices in T-SQL to minimize performance risk Design in the performance that you need through careful query and index design Utilize the latest performance optimization features in SQL Server 2017 Protect query performance during upgrades to the newer versions of SQL Server Who This Book Is For Developers and database administrators with responsibility for application performance in SQL Server environments. Anyone responsible for writing or creating T-SQL queries will find valuable the insight into bottlenecks, including how to recognize them and eliminate them.