talk-data.com talk-data.com

Filter by Source

Select conferences and events

People (10 results)

See all 10 →
Showing 14 results

Activities & events

Title & Speakers Event
Shane Murray – Field CTO @ Monte Carlo , Richie – host @ DataCamp

Data quality and AI reliability are two sides of the same coin in today's technology landscape. Organizations rushing to implement AI solutions often discover that their underlying data infrastructure isn't prepared for these new demands. But what specific data quality controls are needed to support successful AI implementations? How do you monitor unstructured data that feeds into your AI systems? When hallucinations occur, is it really the model at fault, or is your data the true culprit? Understanding the relationship between data quality and AI performance is becoming essential knowledge for professionals looking to build trustworthy AI systems. Shane Murray is a seasoned data and analytics executive with extensive experience leading digital transformation and data strategy across global media and technology organizations. He currently serves as Senior Vice President of Digital Platform Analytics at Versant Media, where he oversees the development and optimization of analytics capabilities that drive audience engagement and business growth. In addition to his corporate leadership role, he is a founding member of InvestInData, an angel investor collective of data leaders supporting early-stage startups advancing innovation in data and AI. Prior to joining Versant Media, Shane spent over three years at Monte Carlo, where he helped shape AI product strategy and customer success initiatives as Field CTO. Earlier, he spent nearly a decade at The New York Times, culminating as SVP of Data & Insights, where he was instrumental in scaling the company’s data platforms and analytics functions during its digital transformation. His earlier career includes senior analytics roles at Accenture Interactive, Memetrics, and Woolcott Research. Based in New York, Shane continues to be an active voice in the data community, blending strategic vision with deep technical expertise to advance the role of data in modern business. In the episode, Richie and Shane explore AI disasters and success stories, the concept of being AI-ready, essential roles and skills for AI projects, data quality's impact on AI, and much more. Links Mentioned in the Show: Versant MediaConnect with ShaneCourse: Responsible AI PracticesRelated Episode: Scaling Data Quality in the Age of Generative AI with Barr Moses, CEO of Monte Carlo Data, Prukalpa Sankar, Cofounder at Atlan, and George Fraser, CEO at FivetranRewatch RADAR AI  New to DataCamp? Learn on the go using the DataCamp mobile appEmpower your business with world-class data and AI skills with DataCamp for business

AI/ML Analytics Data Quality GenAI Monte Carlo
DataFramed
Prukalpa Sankar – Co-founder @ Atlan , Oliver Gomes – VP of Data platform @ Fox Corporation

With hundreds of millions viewing broadcasts from news to sports, Fox relies on a sophisticated and trusted architecture ingesting 100+ data sources, carefully governed to improve UX across products, drive sales and marketing, and ensure KPI tracking. Join Oliver Gomes, VP of Enterprise and Data Platform at Fox, and Prukalpa Sankar of Atlan to learn how true partnership helps their team navigate opportunities from Governance to AI. To govern and democratize their multi-cloud data platform, Fox chose Atlan to make data accessible and understandable for more users than ever before. Their team then used a data product approach to create a shared language using context from sources like Unity Catalog at a single point of access, no matter the underlying technology. Now, Fox is defining an ambitious future for Metadata. With Atlan and Iceberg driving interoperability, their team prepares to build a “control plane”, creating a common system of trust and governance.

AI/ML Cloud Computing Iceberg KPI Marketing
Data + AI Summit 2025
Mauro Flores @ Virgin Media O2 , Prukalpa Sankar @ Atlan

With over 45 million connections across broadband, mobile, TV, and home phone, VMO2 is on a mission to upgrade the UK. Hard at work making their data trustworthy and accessible, their data team is now ensuring nearly 16,000 colleagues can make the most of it.
Join Mauro Flores, EVP, Data Democratisation at VMO2, and Prukalpa Sankar, Co-founder of Atlan, for a behind-the-scenes look at how they’ve transformed Data Governance into a business enabler, taking an AI- and domain-based approach to build a single definition of trustworthy data, and unleashing it for end-users through data products.

AI/ML Data Governance
gartner-data-analytics-uk-2025
Chad Sanderson – CEO @ Gable.ai , Prukalpa Sankar , Barr Moses – CEO & Co-Founder @ Monte Carlo , Tristan Handy

Panel: Shift Left Across the Data Lifecycle—Data Contracts, Transformations, Observability, and Catalogs | Prukalpa Sankar, Tristan Handy, Barr Moses, Chad Sanderson | Shift Left Data Conference 2025

Join industry-leading CEOs Chad (Data Contracts), Tristan (Data Transformations), Barr (Data Observability), and Prukalpa (Data Catalogs) who are pioneering new approaches to operationalizing data by “Shifting Left.” This engaging panel will explore how embedding rigorous data management practices early in the data lifecycle reduces issues downstream, enhances data reliability, and empowers software engineers with clear visibility into data expectations. Attendees will gain insights into how data contracts define accountability, how effective transformations ensure data usability at scale, how proactive how proactive data and AI observability drives continuous confidence in data quality, and how catalogs enable data discoverability, accelerating innovation and trust across organizations.

AI/ML Data Contracts Data Management Data Quality
Shift Left Data Conference 2025
Event DataFramed 2024-07-03
Prukalpa Sankar – Co-founder @ Atlan , Barr Moses – CEO and co-founder @ Monte Carlo , George Fraser – CEO @ Fivetran

Generative AI's transformative power underscores the critical need for high-quality data. In this session, Barr Moses, CEO of Monte Carlo Data, Prukalpa Sankar, Cofounder at Atlan, and George Fraser, CEO at Fivetran, discuss the nuances of scaling data quality for generative AI applications, highlighting the unique challenges and considerations that come into play. Throughout the session, they share best practices for data and AI leaders to navigate these challenges, ensuring that governance remains a focal point even amid the AI hype cycle. Links Mentioned in the Show: Rewatch Session from RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business

AI/ML Data Quality Fivetran GenAI Monte Carlo
Prukalpa Sankar – Co-founder @ Atlan , Richie – host @ DataCamp

In the fast-paced work environments we are used to, the ability to quickly find and understand data is essential. Data professionals can often spend more time searching for data than analyzing it, which can hinder business progress. Innovations like data catalogs and automated lineage systems are transforming data management, making it easier to ensure data quality, trust, and compliance. By creating a strong metadata foundation and integrating these tools into existing workflows, organizations can enhance decision-making and operational efficiency. But how did this all come to be, who is driving better access and collaboration through data? Prukalpa Sankar is the Co-founder of Atlan. Atlan is a modern data collaboration workspace (like GitHub for engineering or Figma for design). By acting as a virtual hub for data assets ranging from tables and dashboards to models & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Slack, BI tools, data science tools and more. A pioneer in the space, Atlan was recognized by Gartner as a Cool Vendor in DataOps, as one of the top 3 companies globally. Prukalpa previously co-founded SocialCops, world leading data for good company (New York Times Global Visionary, World Economic Forum Tech Pioneer). SocialCops is behind landmark data projects including India’s National Data Platform and SDGs global monitoring in collaboration with the United Nations. She was awarded Economic Times Emerging Entrepreneur for the Year, Forbes 30u30, Fortune 40u40, Top 10 CNBC Young Business Women 2016, and a TED Speaker. In the episode, Richie and Prukalpa explore challenges within data discoverability, the inception of Atlan, the importance of a data catalog, personalization in data catalogs, data lineage, building data lineage, implementing data governance, human collaboration in data governance, skills for effective data governance, product design for diverse audiences, regulatory compliance, the future of data management and much more.  Links Mentioned in the Show: AtlanConnect with Prukalpa[Course] Artificial Intelligence (AI) StrategyRelated Episode: Adding AI to the Data Warehouse with Sridhar Ramaswamy, CEO at SnowflakeSign up to RADAR: AI Edition New to DataCamp? Learn on the go using the DataCamp mobile app Empower your business with world-class data and AI skills with DataCamp for business

AI/ML BI Data Governance Data Management Data Quality Data Science DataOps DWH GitHub Modern Data Stack
Sven Balnojan – author , Marian Siwiak – author , Jacek Majchrzak – author

Revolutionize the way your organization approaches data with a data mesh! This new decentralized architecture outpaces monolithic lakes and warehouses and can work for a company of any size. In Data Mesh in Action you will learn how to: Implement a data mesh in your organization Turn data into a data product Move from your current data architecture to a data mesh Identify data domains, and decompose an organization into smaller, manageable domains Set up the central governance and local governance levels over data Balance responsibilities between the two levels of governance Establish a platform that allows efficient connection of distributed data products and automated governance Data Mesh in Action reveals how this groundbreaking architecture looks for both startups and large enterprises. You won’t need any new technology—this book shows you how to start implementing a data mesh with flexible processes and organizational change. You’ll explore both an extended case study and real-world examples. As you go, you’ll be expertly guided through discussions around Socio-Technical Architecture and Domain-Driven Design with the goal of building a sleek data-as-a-product system. Plus, dozens of workshop techniques for both in-person and remote meetings help you onboard colleagues and drive a successful transition. About the Technology Business increasingly relies on efficiently storing and accessing large volumes of data. The data mesh is a new way to decentralize data management that radically improves security and discoverability. A well-designed data mesh simplifies self-service data consumption and reduces the bottlenecks created by monolithic data architectures. About the Book Data Mesh in Action teaches you pragmatic ways to decentralize your data and organize it into an effective data mesh. You’ll start by building a minimum viable data product, which you’ll expand into a self-service data platform, chapter-by-chapter. You’ll love the book’s unique “sliders” that adjust the mesh to meet your specific needs. You’ll also learn processes and leadership techniques that will change the way you and your colleagues think about data. What's Inside Decompose an organization into manageable domains Turn data into a data product Set up central and local governance levels Build a fit-for-purpose data platform Improve management, initiation, and support techniques About the Reader For data professionals. Requires no specific programming stack or data platform. About the Authors Jacek Majchrzak is a hands-on lead data architect. Dr. Sven Balnojan manages data products and teams. Dr. Marian Siwiak is a data scientist and a management consultant for IT, scientific, and technical projects. Quotes This book teleports you into the seat of the chief architect on a data mesh project. - From the Foreword by Jean-Georges Perrin, PayPal A must-read for anyone who works in data. - Prukalpa Sankar, Co-Founder of Atlan Satisfies all those ‘what’, ‘why’, and ‘how’ questions. A unique blend of process and technology, and an excellent, example-driven resource. - Shiroshica Kulatilake, WSO2 The starting point for your journey in the new generation of data platforms. - Arnaud Castelltort, University of Montpellier

data data-engineering database-architecture data-mesh Data Management Cyber Security
O'Reilly Data Engineering Books
Chad Sanderson – guest @ Gable.ai , Prukalpa Sankar – Co-founder @ Atlan

WARNING: This episode contains detailed discussion of data contracts. The modern data stack introduces challenges in terms of collaboration between data producers and consumers. How might we solve them to ultimately build trust in data quality? Chad Sanderson leads the data platform team at Convoy, a late-stage series-E freight technology startup. He manages everything from instrumentation and data ingestion to ETL, in addition to the metrics layer, experimentation software and ML.  Prukalpa Sankar is a co-founder of Atlan, where she develops products that enable improved collaboration between diverse users like businesses, analysts, and engineers, creating higher efficiency and agility in data projects.  For full show notes and to read 6+ years of back issues of the podcast's companion newsletter, head to https://roundup.getdbt.com.  The Analytics Engineering Podcast is sponsored by dbt Labs.

AI/ML Analytics Analytics Engineering Data Contracts Data Quality dbt ETL/ELT Modern Data Stack
The Analytics Engineering Podcast
Prukalpa Sankar , Todd Greenstein – Product Manager @ Databricks

“What does this mean? Who created it? How is it being used? Is it up to date?” Ever fielded these types of questions about your Databricks assets?

Today, context is a huge challenge for data teams. Everyone wants to use your company’s data, but often only a few experts know all of its tribal knowledge and context. The result — they get bombarded with endless questions and requests.

Atlan — the active metadata platform for modern data teams, recently named a Leader in The Forrester Wave: Enterprise Data Catalogs for DataOps — has launched an integration with Databricks Unity Catalog. By connecting to UC’s REST API, Atlan extracts metadata from Databricks clusters and workspaces, generates column-level lineage, and pairs it with metadata from the rest of your data assets to create true end-to-end lineage and visibility across your data stack.

In this session, Prukalpa Sankar (Co-Founder at Atlan and a lifelong data practitioner) and Todd Greenstein (Product Manager with Databricks) will do a live product demo to show how Atlan and Databricks work together to power modern data governance, cataloging, and collaboration.

Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/data... Instagram: https://www.instagram.com/databricksinc/

API Data Governance Databricks DataOps
Databricks DATA + AI Summit 2023
Prukalpa Sankar – Co-founder @ Atlan , Tobias Macey – host

Summary Metadata is the lifeblood of your data platform, providing information about what is happening in your systems. A variety of platforms have been developed to capture and analyze that information to great effect, but they are inherently limited in their utility due to their nature as storage systems. In order to level up their value a new trend of active metadata is being implemented, allowing use cases like keeping BI reports up to date, auto-scaling your warehouses, and automated data governance. In this episode Prukalpa Sankar joins the show to talk about the work she and her team at Atlan are doing to push this capability into the mainstream.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show! RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their state-of-the-art reverse ETL pipelines enable you to send enriched data to any cloud tool. Sign up free… or just get the free t-shirt for being a listener of the Data Engineering Podcast at dataengineeringpodcast.com/rudder. Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure, or GCP. Go to dataengineeringpodcast.com/ascend and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $5,000 when you become a customer. Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. Your host is Tobias Macey and today I’m interviewing Prukalpa Sankar about how data platforms can benefit from the idea of "active metadata" and the work that she and her team at Atlan are doing to make it a reality

Interview

Introduction How did you get involved in the area of data management? Can you describe what "active metadata" is and how it differs from the current approaches to metadata systems? What are some of the use cases that "active metadata" can enable for data producers and consumers?

What are the points of friction that those users encounter in the current formulation of metadata systems?

Central metadata systems/data catalogs came about as a solution to the challenge of integrating every data tool with every other data tool, giving a single place to integrate. What are the lessons that are being learned from the "modern data stack" that can be applied to centralized metadata? Can you describe the approach that you are taking at Atlan to enable the adoption of "active metadata"?

What are the architectural capabilities that you had to build to power the outbound traffic flows?

How are you addressing the N x M integration problem for pushing metadata into the necessary contexts at Atlan?

What are the interfaces that are necessary for receiving systems to be able to make use of the metadata that is being delivered? How does the type/category of metadata impact the type of integration that is necessary?

What are some of the automation possibilities that metadata activation offers for data teams?

What are the cases where you still need a human in the loop?

What are the most interesting, innovative, or unexpected ways that you have seen active metadata capabilities used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on activating metadata for your users? When is an active approach to metadata the wrong choice? What do you have planned for the future of Atlan and active metadata?

Contact Info

LinkedIn @prukalpa on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don’t forget to check out our other shows. Podcast.init covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

Atlan What is Active Metadata? Segment

Podcast Episode

Zapier ArgoCD Kubernetes Wix AWS Lambda Modern Data Culture Blog Post

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

AI/ML Airflow Argo CD AWS AWS Lambda Azure BI BigQuery CDP Cloud Computing Data Engineering Data Governance Data Lake Data Management Databricks ETL/ELT GCP Git Informatica Java Kubernetes Modern Data Stack MongoDB MySQL postgresql Python Scala Snowflake Spark SQL Data Streaming
Data Engineering Podcast
Val Kroll – host , Julie Hoyer – host , Prukalpa Sankar – Co-founder @ Atlan , Michael Helbling – host , Tim Wilson – host @ Analytics Power Hour - Columbus (OH , Moe Kiss – host

It's easy to get sucked into the "technology" side of things when it comes to improving the effectiveness and scaling up data teams, but, much to Tim's dismay, shoring up the people, process, and culture is often just as (if not more) critical. So, sure, we can talk about the modern data stack, but what about the modern data CULTURE stack? Prukalpa Sankar, co-founder of Atlan, joined us for a lively discussion of the topic! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

Modern Data Stack
The Analytics Power Hour
Prukalpa Sankar – Co-founder @ Atlan , Debika Sharma – guest , Cindi Howson – Chief Data Strategy Officer @ ThoughtSpot

The number of women entering data professions is growing, and men need to adapt. This podcast is designed to enlighten men about the role of women in the data field. Our guests are all executives at data and analytics software companies who have held positions in other sectors of our field: Prukalpa Sankar, Cindi Howson, Debika Sharma.

Analytics
Secrets of Data Analytics Leaders
Tobias Macey – author

Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail

data data-engineering AI/ML Data Engineering DWH ETL/ELT Modern Data Stack Microsoft Cyber Security Stitch
O'Reilly Data Engineering Books
Prukalpa Sankar – Co-founder @ Atlan , Tobias Macey – host

Summary One of the biggest obstacles to success in delivering data products is cross-team collaboration. Part of the problem is the difference in the information that each role requires to do their job and where they expect to find it. This introduces a barrier to communication that is difficult to overcome, particularly in teams that have not reached a significant level of maturity in their data journey. In this episode Prukalpa Sankar shares her experiences across multiple attempts at building a system that brings everyone onto the same page, ultimately bringing her to found Atlan. She explains how the design of the platform is informed by the needs of managing data projects for large and small teams across her previous roles, how it integrates with your existing systems, and how it can work to bring everyone onto the same page.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Prukalpa Sankar about Atlan, a modern data workspace that makes collaboration among data stakeholders easier, increasing efficiency and agility in data projects

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what you are building at Atlan and some of the story behind it? Who are the target users of Atlan? What portions of the data workflow is Atlan responsible for?

What components of the data stack might Atlan replace?

How would you characterize Atlan’s position in the current data ecosystem?

What makes Atlan stand out from other systems for data cataloguing, metadata management, or data governance? What types of data assets (e.g. structured vs unstructured, textual

Airflow BI BigQuery CI/CD Cloud Computing Data Engineering Data Governance Data Management Data Quality Datafold dbt DWH ETL/ELT Kubernetes Redshift Snowflake Data Streaming
Data Engineering Podcast
Showing 14 results