talk-data.com talk-data.com

Topic

data

5765

tagged

Activity Trend

3 peak/qtr
2020-Q1 2026-Q1

Activities

5765 activities · Newest first

IBM zPDT Guide and Reference

Abstract This IBM® Redbooks® publication provides both introductory information and technical details about the IBM System z® Personal Development Tool (IBM zPDT®), which produces a small System z environment suitable for application development. zPDT is a PC Linux application. When zPDT is installed (on Linux), normal System z operating systems (such as IBM z/OS®) can be run on it. zPDT provides the basic System z architecture and emulated IBM 3390 disk drives, 3270 interfaces, OSA interfaces, and so on. The systems that are discussed in this document are complex. They have elements of Linux (for the underlying PC machine), IBM z/Architecture® (for the core zPDT elements), System z I/O functions (for emulated I/O devices), z/OS (the most common System z operating system), and various applications and subsystems under z/OS. The reader is assumed to be familiar with general concepts and terminology of System z hardware and software elements, and with basic PC Linux characteristics. This book provides the primary documentation for zPDT.

Making Data Visual

You have a mound of data front of you and a suite of computation tools at your disposal. Which parts of the data actually matter? Where is the insight hiding? If you’re a data scientist trying to navigate the murky space between data and insight, this practical book shows you how to make sense of your data through high-level questions, well-defined data analysis tasks, and visualizations to clarify understanding and gain insights along the way. When incorporated into the process early and often, iterative visualization can help you refine the questions you ask of your data. Authors Danyel Fisher and Miriah Meyer provide detailed case studies that demonstrate how this process can evolve in the real world. You’ll learn: The data counseling process for moving from general to more precise questions about your data, and arriving at a working visualization The role that visual representations play in data discovery Common visualization types by the tasks they fulfill and the data they use Visualization techniques that use multiple views and interaction to support analysis of large, complex data sets

SciPy Recipes

Dive into the world of scientific computing with 'SciPy Recipes', a practical guide tailored for anyone seeking hands-on experience with the SciPy stack. With over 110 detailed recipes, you'll gain expertise in handling real-world data challenges, from statistical computations to crafting intricate visualizations and beyond. What this Book will help me do Learn to use the SciPy Stack libraries like NumPy, pandas, and matplotlib effectively for scientific computing tasks. Master data wrangling techniques using pandas for efficient data manipulation. Understand the process of creating informative visualizations using matplotlib. Perform advanced statistical and numerical computations with simplicity. Solve real-world problems like numerical analysis and linear algebra using SciPy components. Author(s) None Martins, Ruben Oliva Ramos, and V Kishore Ayyadevara bring years of experience in scientific computing and Python programming to this book. Individually, they have contributed extensively to the implementation of computational tools and systems. Together, they've crafted this book to be both accessible to learners and insightful for practitioners, blending instruction with real-world practical applications. Who is it for? This book is designed for Python developers, data scientists, and analysts eager to venture into scientific computing. If you have a basic understanding of Python and aspire to effectively manipulate and visualize data using the SciPy stack, this book is perfect for you. It's equally beneficial for those who seek practical solutions to complex computational challenges. Begin your journey into scientific computing with this essential guide.

Adaptive Filtering

This book covers the fundamentals of adaptive filtering, with a focus on the least mean square (LMS) adaptive filter. It discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions, while delivering a concise introduction to MATLAB®—complete with problems, computer experiments, and over 110 functions and script files. The text not only addresses the basics of the LMS adaptive filter algorithm but also explores the Wiener filter and its applications, details the steepest descent method, and develops the Newton’s algorithm.

Biological and Medical Sensor Technologies

Edited by a pioneer in the area of advanced semiconductor materials, this book contains contributions from experts who explore the development and use of sensors in biological and medical applications. It covers advanced sensing and communications, modeling of DNA-derivative architecture, and the use of enzyme and quartz crystal microbalance-based biosensors. The book also addresses biosensors in human behavior measurement, sweat rate wearable sensors, and the future of medical imaging, including developments in spatial and spectral resolution of semiconductor detectors. Contributors discuss application of high-resolution CdTe detectors in gamma ray imaging and recent advances in positron emission tomography technology.

Electronically Scanned Arrays MATLAB® Modeling and Simulation

Electronically scanned arrays (ESAs) have become a key technology for sensor electronic systems. MATLAB® provides an excellent framework for ESA design and analysis, and this book is an invaluable resource for those who require simulation analysis tools that provide insight and understanding for ESA design. In addition to covering ESA fundamentals such as pattern synthesis, grating lobes, and instantaneous bandwidth, the text also provides insight into pattern optimization, subarray beamforming, space-based application of ESAs, and ESA reliability modeling. The book provides MATLAB code, giving readers an opportunity to model ESAs and develop an in-depth understanding that other books do not offer.

Fundamentals of Predictive Analytics with JMP, Second Edition

Written for students in undergraduate and graduate statistics courses, as well as for the practitioner who wants to make better decisions from data and models, this updated and expanded second edition of Fundamentals of Predictive Analytics with JMP(R) bridges the gap between courses on basic statistics, which focus on univariate and bivariate analysis, and courses on data mining and predictive analytics. Going beyond the theoretical foundation, this book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. First, this book teaches you to recognize when it is appropriate to use a tool, what variables and data are required, and what the results might be. Second, it teaches you how to interpret the results and then, step-by-step, how and where to perform and evaluate the analysis in JMP . Using JMP 13 and JMP 13 Pro, this book offers the following new and enhanced features in an example-driven format: an add-in for Microsoft Excel Graph Builder dirty data visualization regression ANOVA logistic regression principal component analysis LASSO elastic net cluster analysis decision trees k-nearest neighbors neural networks bootstrap forests boosted trees text mining association rules model comparison With today’s emphasis on business intelligence, business analytics, and predictive analytics, this second edition is invaluable to anyone who needs to expand his or her knowledge of statistics and to apply real-world, problem-solving analysis. This book is part of the SAS Press program.

A Data Scientist's Guide to Acquiring, Cleaning, and Managing Data in R

The only how-to guide offering a unified, systemic approach to acquiring, cleaning, and managing data in R Every experienced practitioner knows that preparing data for modeling is a painstaking, time-consuming process. Adding to the difficulty is that most modelers learn the steps involved in cleaning and managing data piecemeal, often on the fly, or they develop their own ad hoc methods. This book helps simplify their task by providing a unified, systematic approach to acquiring, modeling, manipulating, cleaning, and maintaining data in R. Starting with the very basics, data scientists Samuel E. Buttrey and Lyn R. Whitaker walk readers through the entire process. From what data looks like and what it should look like, they progress through all the steps involved in getting data ready for modeling. They describe best practices for acquiring data from numerous sources; explore key issues in data handling, including text/regular expressions, big data, parallel processing, merging, matching, and checking for duplicates; and outline highly efficient and reliable techniques for documenting data and recordkeeping, including audit trails, getting data back out of R, and more. The only single-source guide to R data and its preparation, it describes best practices for acquiring, manipulating, cleaning, and maintaining data Begins with the basics and walks readers through all the steps necessary to get data ready for the modeling process Provides expert guidance on how to document the processes described so that they are reproducible Written by seasoned professionals, it provides both introductory and advanced techniques Features case studies with supporting data and R code, hosted on a companion website A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R is a valuable working resource/bench manual for practitioners who collect and analyze data, lab scientists and research associates of all levels of experience, and graduate-level data mining students.

Oracle Business Intelligence with Machine Learning: Artificial Intelligence Techniques in OBIEE for Actionable BI

Use machine learning and Oracle Business Intelligence Enterprise Edition (OBIEE) as a comprehensive BI solution. This book follows a when-to, why-to, and how-to approach to explain the key steps involved in utilizing the artificial intelligence components now available for a successful OBIEE implementation. Oracle Business Intelligence with Machine Learning covers various technologies including using Oracle OBIEE, R Enterprise, Spatial Maps, and machine learning for advanced visualization and analytics. The machine learning material focuses on learning representations of input data suitable for a given prediction problem. This book focuses on the practical aspects of implementing machine learning solutions using the rich Oracle BI ecosystem. The primary objective of this book is to bridge the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to machine learning with OBIEE. What You Will Learn See machine learning in OBIEE Master the fundamentals of machine learning and how it pertains to BI and advanced analytics Gain an introduction to Oracle R Enterprise Discover the practical considerations of implementing machine learning with OBIEE Who This Book Is For Analytics managers, BI architects and developers, and data scientists.

XML and JSON Recipes for SQL Server: A Problem-Solution Approach

Quickly find solutions to dozens of common problems encountered while using XML and JSON features that are built into SQL Server. Content is presented in the popular problem-solution format. Look up the problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! This book shows how to take advantage of XML and JSON to share data and automate tasks. JSON is commonly used to move data back and forth between the database and front-end applications, often running in a browser. This book shows all you need to know about transforming query results into JSON format, and back again. Also covered are the processes and techniques for moving data into and out of XML format for business intelligence and other purposes, such as when transferring data from a reporting system into a data warehouse, or between different database brands such as between SQL Server and Oracle. Microsoft intensively implements XML in SQL Server, and in many related products. Execution plans are generated in XML format, and this book shows you how to parse those plans and automate the detection of performance problems. The relatively new Extended Events feature writes tracing data into XML files, and the recipes in this book help in parsing those files. XML is also used in SQL Server's BI tool set, including in SSIS, SSR, and SSAS. XML is used in many configuration files, and is even behind the construction of DDL triggers. In reading this book you’ll dive deeply into the features that allow you to build and parse XML, and also JSON, which is a specific format of XML used to transmit objects in a web-friendly format between a database and its front-end applications. What You Will Learn Build XML and JSON objects in support of automation and data transfer Import and parse XML and JSON from operating system files Build appropriate indexes on XML objects to improve query performance Move data from query result sets into JSON format, and back again Automate the detection of database performance problems by querying and parsing the database’s own execution plans Replace external and manual JSON processes with SQL Server's internal, JSON functionality Who This Book Is For Database administrators, .NET developers, business intelligence developers, and other professionals who want a deep and detailed skill set around working with XML and JSON in a SQL Server database environment. Web developers will particularly find the book useful for its coverage of transforming database result sets into JSON text that can be transmitted to front-end web applications.

Data Mining Algorithms in C++: Data Patterns and Algorithms for Modern Applications

Discover hidden relationships among the variables in your data, and learn how to exploit these relationships. This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications. All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program. The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What You'll Learn Use Monte-Carlo permutation tests to provide statistically sound assessments of relationships present in your data Discover how combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data Work with feature weighting as regularized energy-based learning to rank variables according to their predictive power when there is too little data for traditional methods See how the eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the data Plot regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high Who This Book Is For Anyone interested in discovering and exploiting relationships among variables. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.

Oracle WebLogic Server 12c Administration I Exam 1Z0-133: A Comprehensive Certification Guide

Use this comprehensive guide to study for the Oracle WebLogic Server 12c Administration I Exam 1Z0-133. This book is a unique introductory resource to the WebLogic Server certification for new Oracle Fusion Middleware administrators and a valuable resource for veteran WebLogic Server administrators seeking to update their skills for the 12c certification topics. It is common sense that passing a certification exam requires a good command of the subject matter, understanding the intricacies surrounding its practice, and having sufficient experience working with the concepts. This book aims to accelerate the process by providing an accurate review of all exam topics, suggesting hands-on practices to gain or reinforce experience working with WebLogic Server, and introducing questions to help candidates become familiar with the format and style of questions found on the actual certification exam. Oracle WebLogic Server 12c Administration I Exam 1Z0-133 covers the associate level certification with Oracle. Although not dedicated to exam 1Z0-599, the guide is also a valuable foundational resource for those preparing for WebLogic Server 12c implementation specialist level certification. This book: Inspects the certification topics in the order that you would likely follow in an on-the-job middleware infrastructure project Is a great resource for candidates preparing for the certification, who are unable to start with live or personally-assisted training Is a great starting point for those pursuing advanced Oracle WebLogic Server certifications What You’ll Learn Cover all topics on the certification exam 1Z0-133 Become familiar with the types and format of questions on the certification exam Understand and properly describe Oracle WebLogic Server domains and clusters Install, configure, maintain, and monitor Oracle WebLogic Server Deploy and manage applications on Oracle WebLogic Server Discover how to use new administration features of Oracle WebLogic Server 12c Who This Book Is For Certified Oracle WebLogic administrators seeking to update their Oracle WebLogic Server credentials, as well as experienced WebLogic Server administrators seeking to earn certification for the first time. Non-Oracle administrators seeking to earn a WebLogic Server certification will also find this book useful.

Pandas for Everyone: Python Data Analysis, First Edition

The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Pandas for Everyone Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning Register your product at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.

SQL Server 2017 Administrator's Guide

Dive into 'SQL Server 2017 Administrator's Guide' to master the administrative and maintenance aspects of SQL Server 2017. This comprehensive guide provides expert strategies and best practices to design, secure, and manage robust SQL Server systems effectively. What this Book will help me do Understand the new features and capabilities of SQL Server 2017 to enhance your database systems. Learn step-by-step how to configure, optimize, and troubleshoot SQL Server environments for maximum performance. Gain expertise in creating reliable backup and recovery solutions that minimize downtime and protect data. Develop skills in securing SQL Server instances against threats and maintaining system health. Explore integrating SQL Server 2017 with Azure and leveraging cloud capabilities for enhanced functionality. Author(s) The authors of 'SQL Server 2017 Administrator's Guide' are seasoned database administrators and experts in SQL Server technology. With years of practical experience, they have tackled challenges across various industries and bring a wealth of know-how to this book. They aim to provide clear, actionable guidance to help readers succeed. Who is it for? This book is ideal for database administrators who want to deepen their knowledge of SQL Server 2017 administration. It is especially suitable for professionals with some experience in earlier versions of SQL Server who wish to apply their skills to the latest edition. Whether you're an aspiring DBA or an experienced professional seeking to refine your strategies, this guide offers substantial value.

The Power of Connection

A simple communication framework to begin practising today We all carry around the technology to stay connected 24/7, yet many of us are disengaged and challenged with our lack of communication skills. The Power of Connection provides you with practical, real-world solutions for improving your professional performance, your personal relationships and your outlook — one conversation at a time. Becoming a confident and compelling communicator might be the most important skill for leaders in the modern business landscape, parents in the modern home and individuals who use ‘self-talk' to help shape their world. By adopting the simple strategies revealed in every chapter, you can become an unshakeable success at what you set out to do. This book is designed to help you start communicating better today, so start reading and start practicing with your very next conversation! Understand your communication strengths and weaknesses Become a better listener to build a deeper connection Learn how communication sits at the heart of all relationships Develop the skills to connect, inspire, engage and empower We are surrounded by noise, yet no one is actually saying anything we can connect with — or are we just not listening? Communication is a two-way street, and involves so much more than just speaking. The Power of Connection offers a quick and easy road map for your personal journey of growth and development that will make you a better parent, friend, spouse and employee. It's the right message for this time considering there's never a wrong time to level up your skills and become more effective at work, at home and in life.

Expert Apache Cassandra Administration

Follow this handbook to build, configure, tune, and secure Apache Cassandra databases. Start with the installation of Cassandra and move on to the creation of a single instance, and then a cluster of Cassandra databases. Cassandra is increasingly a key player in many big data environments, and this book shows you how to use Cassandra with Apache Spark, a popular big data processing framework. Also covered are day-to-day topics of importance such as the backup and recovery of Cassandra databases, using the right compression and compaction strategies, and loading and unloading data. Expert Apache Cassandra Administration provides numerous step-by-step examples starting with the basics of a Cassandra database, and going all the way through backup and recovery, performance optimization, and monitoring and securing the data. The book serves as an authoritative and comprehensive guide to the building and management of simpleto complex Cassandra databases. The book: Takes you through building a Cassandra database from installation of the software and creation of a single database, through to complex clusters and data centers Provides numerous examples of actual commands in a real-life Cassandra environment that show how to confidently configure, manage, troubleshoot, and tune Cassandra databases Shows how to use the Cassandra configuration properties to build a highly stable, available, and secure Cassandra database that always operates at peak efficiency What You'll Learn Install the Cassandra software and create your first database Understand the Cassandra data model, and the internal architecture of a Cassandra database Create your own Cassandra cluster, step-by-step Run a Cassandra cluster on Docker Work with Apache Spark by connecting to a Cassandra database Deploy Cassandra clusters in your data center, or on Amazon EC2 instances Back up and restore mission-critical Cassandra databases Monitor, troubleshoot, and tune production Cassandra databases, and cut your spending on resources such as memory, servers, and storage Who This Book Is For Database administrators, developers, and architects who are looking for an authoritative and comprehensive single volume for all their Cassandra administration needs. Also for administrators who are tasked with setting up and maintaining highly reliable and high-performing Cassandra databases. An excellent choice for big data administrators, database administrators, architects, and developers who use Cassandra as their key data store, to support high volume online transactions, or as a decentralized, elastic data store.

PySpark Recipes: A Problem-Solution Approach with PySpark2

Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model. What You Will Learn Understand the advanced features of PySpark2 and SparkSQL Optimize your code Program SparkSQL with Python Use Spark Streaming and Spark MLlib with Python Perform graph analysis with GraphFrames Who This Book Is For Data analysts, Python programmers, big data enthusiasts

Pro Power BI Desktop

Deliver eye-catching Business Intelligence with Microsoft Power BI Desktop. This new edition has been updated to cover all the latest features, including combo charts, Cartesian charts, trend lines, use of gauges, and more. Also covered are Top-N features, the ability to bin data into groupings and chart the groupings, and new techniques for detecting and handling outlier data points. You can take data from virtually any source and use it to produce stunning dashboards and compelling reports that will seize your audience’s attention. Slice and dice the data with remarkable ease and then add metrics and KPIs to project the insights that create your competitive advantage. Make raw data into clear, accurate, and interactive information with Microsoft’s free self-service business intelligence tool. Pro Power BI Desktop shows you how to choose from a wide range of built-in and third-party visualization types so that your message is always enhanced. You’ll be able to deliver those results on the PC, tablets, and smartphones, as well as share results via the cloud. This book helps you save time by preparing the underlying data correctly without needing an IT department to prepare it for you. What You'll Learn Deliver attention-grabbing information, turning data into insight Mash up data from multiple sources into a cleansed and coherent data model Create dashboards that help in monitoring key performance indicators of your business Build interdependent charts, maps, and tables to deliver visually stunning information Share business intelligence in the cloud without involving IT Deliver visually stunning and interactive charts, maps, and tables Find new insights as you chop and tweak your data as never before Adapt delivery to mobile devices such as phones and tablets Who This Book Is For Everyone from CEOs and Business Intelligence developers to power users and IT managers

D3.js in Action, Second Edition

D3.js in Action, Second Edition is completely revised and updated for D3 v4 and ES6. It's a practical tutorial for creating interactive graphics and data-driven applications using D3. About the Technology Visualizing complex data is hard. Visualizing complex data on the web is darn near impossible without D3.js. D3 is a JavaScript library that provides a simple but powerful data visualization API over HTML, CSS, and SVG. Start with a structure, dataset, or algorithm; mix in D3; and you can programmatically generate static, animated, or interactive images that scale to any screen or browser. It's easy, and after a little practice, you'll be blown away by how beautiful your results can be! About the Book D3.js in Action, Second Edition is a completely updated revision of Manning's bestselling guide to data visualization with D3. You'll explore dozens of real-world examples in full-color, including force and network diagrams, workflow illustrations, geospatial constructions, and more! Along the way, you'll pick up best practices for building interactive graphics, animations, and live data representations. You'll also step through a fully interactive application created with D3 and React. What's Inside Rich full-color diagrams and illustrations Updated for D3 v4 and ES6 Reusable layouts and components Geospatial data visualizations Mixed-mode rendering About the Reader Suitable for web developers with HTML, CSS, and JavaScript skills. No specialized data science skills required. About the Author Elijah Meeks is a senior data visualization engineer at Netflix. Quotes From basic to complex, this book gives you the tools to create beautiful data visualizations. - Claudio Rodriguez, Cox Media Group The best reference for one of the most useful DataViz tools. - Jonathan Rioux, TD Insurance From toy examples to techniques for real projects. Shows how all the pieces fit together. - Scott McKissock, USAID A clever way to immerse yourself in the D3.js world. - Felipe Vildoso Castillo, University of Chile