talk-data.com talk-data.com

Topic

Presto

distributed_sql_query_engine big_data analytics

35

tagged

Activity Trend

6 peak/qtr
2020-Q1 2026-Q1

Activities

35 activities · Newest first

Summary Data integration is a critical piece of every data pipeline, yet it is still far from being a solved problem. There are a number of managed platforms available, but the list of options for an open source system that supports a large variety of sources and destinations is still embarrasingly short. The team at Airbyte is adding a new entry to that list with the goal of making robust and easy to use data integration more accessible to teams who want or need to maintain full control of their data. In this episode co-founders John Lafleur and Michel Tricot share the story of how and why they created Airbyte, discuss the project’s design and architecture, and explain their vision of what an open soure data integration platform should offer. If you are struggling to maintain your extract and load pipelines or spending time on integrating with a new system when you would prefer to be working on other projects then this is definitely a conversation worth listening to.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Modern Data teams are dealing with a lot of complexity in their data pipelines and analytical code. Monitoring data quality, tracing incidents, and testing changes can be daunting and often takes hours to days. Datafold helps Data teams gain visibility and confidence in the quality of their analytical data through data profiling, column-level lineage and intelligent anomaly detection. Datafold also helps automate regression testing of ETL code with its Data Diff feature that instantly shows how a change in ETL or BI code affects the produced data, both on a statistical level and down to individual rows and values. Datafold integrates with all major data warehouses as well as frameworks such as Airflow & dbt and seamlessly plugs into CI workflows. Go to dataengineeringpodcast.com/datafold today to start a 30-day trial of Datafold. Once you sign up and create an alert in Datafold for your company data, they will send you a cool water flask. RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Your host is Tobias Macey and today I’m interviewing Michel Tricot and John Lafleur about Airbyte, an open source framework for building data integration pipelines.

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Airbyte is and the story behind it? Businesses and data engineers have a variety of options for how to manage their data integration. How would you characterize the overall landscape and how does Airbyte distinguish itself in that space? How would you characterize your target users?

How have those personas instructed the priorities and design of Airbyte? What do you see as the benefits and tradeoffs of a UI oriented data integration platform as compared to a code first approach?

what are the complex/challenging elements of data integration that makes it such a slippery problem? motivation for creating open source ELT as a business Can you describe how the Airbyte platform is implemented?

What was your motivation for choosing Java as the primary language?

incidental complexity of forcing all connectors to be packaged as containers shortcomings of the Singer specification/motivation for creating a backwards incompatible interface perceived potential for community adoption of Airbyte specification tradeoffs of using JSON as interchange format vs. e.g. protobuf/gRPC/Avro/etc.

information lost when converting records to JSON types/how to preserve that information (e.g. field constraints, valid enums, etc.)

interfaces/extension points for integrating with other tools, e.g. Dagster abstraction layers for simplifying implementation of new connectors tradeoffs of storing all connectors in a monorepo with the Airbyte core

impact of community adoption/contributions

What is involved in setting up an Airbyte installation? What are the available axes for scaling an Airbyte deployment? challenges of setting up and maintaining CI environment for Airbyte How are you managing governance and long term sustainability of the project? What are some of the most interesting, unexpected, or innovative ways that you have seen Airbyte used? What are the most interesting, unexpected, or challenging lessons that you have learned while building Airbyte? When is Airbyte the wrong choice? What do you have planned for the future of the project?

Contact Info

Michel

LinkedIn @MichelTricot on Twitter michel-tricot on GitHub

John

LinkedIn @JeanLafleur on Twitter johnlafleur on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Airbyte Liveramp Fivetran

Podcast Episode

Stitch Data Matillion DataCoral

Podcast Episode

Singer Meltano

Podcast Episode

Airflow

Podcast.init Episode

Kotlin Docker Monorepo Airbyte Specification Great Expectations

Podcast Episode

Dagster

Data Engineering Podcast Episode Podcast.init Episode

Prefect

Podcast Episode

DBT

Podcast Episode

Kubernetes Snowflake

Podcast Episode

Redshift Presto Spark Parquet

Podcast Episode

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary Databases are limited in scope to the information that they directly contain. For analytical use cases you often want to combine data across multiple sources and storage locations. This frequently requires cumbersome and time-consuming data integration. To address this problem Martin Traverso and his colleagues at Facebook built the Presto distributed query engine. In this episode he explains how it is designed to allow for querying and combining data where it resides, the use cases that such an architecture unlocks, and the innovative ways that it is being employed at companies across the world. If you need to work with data in your cloud data lake, your on-premise database, or a collection of flat files, then give this episode a listen and then try out Presto today.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today! Your host is Tobias Macey and today I’m interviewing Martin Traverso about PrestoSQL, a distributed SQL engine that queries data in place

Interview

Introduction How did you get involved in the area of data management? Can you start by giving an overview of what Presto is and its origin story?

What was the motivation for releasing Presto as open source?

For someone who is responsible for architecting their organization’s data platform, what are some of the signals that Presto will be a good fit for them?

What are the primary ways that Presto is being used?

I interviewed your colleague at Starburst, Kamil 2 years ago. How has Presto changed or evolved in that time, both technically and in terms of community and ecosystem growth? What are some of the deployment and scaling considerations that operators of Presto should be aware of? What are the best practices that have been established for working with data through Presto in terms of centralizing in a data lake vs. federating across disparate storage locations? What are the tradeoffs of using Presto on top of a data lake vs a vertically integrated warehouse solution? When designing the layout of a data lake that will be interacted with via Presto, what are some of the data modeling considerations that can improve the odds of success? What are some of the most interesting, unexpected, or innovative ways that you have seen Presto used? What are the most interesting, unexpected, or challenging lessons that you have

Summary Data lakes offer a great deal of flexibility and the potential for reduced cost for your analytics, but they also introduce a great deal of complexity. What used to be entirely managed by the database engine is now a composition of multiple systems that need to be properly configured to work in concert. In order to bring the DBA into the new era of data management the team at Upsolver added a SQL interface to their data lake platform. In this episode Upsolver CEO Ori Rafael and CTO Yoni Iny describe how they have grown their platform deliberately to allow for layering SQL on top of a robust foundation for creating and operating a data lake, how to bring more people on board to work with the data being collected, and the unique benefits that a data lake provides. This was an interesting look at the impact that the interface to your data can have on who is empowered to work with it.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise. When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! You listen to this show because you love working with data and want to keep your skills up to date. Machine learning is finding its way into every aspect of the data landscape. Springboard has partnered with us to help you take the next step in your career by offering a scholarship to their Machine Learning Engineering career track program. In this online, project-based course every student is paired with a Machine Learning expert who provides unlimited 1:1 mentorship support throughout the program via video conferences. You’ll build up your portfolio of machine learning projects and gain hands-on experience in writing machine learning algorithms, deploying models into production, and managing the lifecycle of a deep learning prototype. Springboard offers a job guarantee, meaning that you don’t have to pay for the program until you get a job in the space. The Data Engineering Podcast is exclusively offering listeners 20 scholarships of $500 to eligible applicants. It only takes 10 minutes and there’s no obligation. Go to dataengineeringpodcast.com/springboard and apply today! Make sure to use the code AISPRINGBOARD when you enroll. Your host is Tobias Macey and today I’m interviewing Ori Rafael and Yoni Iny about building a data lake for the DBA at Upsolver

Interview

Introduction How did you get involved in the area of data management? Can you start by sharing your definition of what a data lake is and what it is comprised of? We talked last in November of 2018. How has the landscape of data lake technologies and adoption changed in that time?

How has Upsolver changed or evolved since we last spoke?

How has the evolution of the underlying technologies impacted your implementation and overall product strategy?

What are some of the common challenges that accompany a data lake implementation? How do those challenges influence the adoption or viability of a data lake? How does the introduction of a universal SQL layer change the staffing requirements for building and maintaining a data lake?

What are the advantages of a data lake over a data warehouse if everything is being managed via SQL anyway?

What are some of the underlying realities of the data systems that power the lake which will eventually need to be understood by the operators of the platform? How is the SQL layer in Upsolver implemented?

What are the most challenging or complex aspects of managing the underlying technologies to provide automated partitioning, indexing, etc.?

What are the main concepts that you need to educate your customers on? What are some of the pitfalls that users should be aware of? What features of your platform are often overlooked or underutilized which you think should be more widely adopted? What have you found to be the most interesting, unexpected, or challenging lessons learned while building the technical and business elements of Upsolver? What do you have planned for the future?

Contact Info

Ori

LinkedIn

Yoni

yoniiny on GitHub LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Upsolver

Podcast Episode

DBA == Database Administrator IDF == Israel Defense Forces Data Lake Eventual Consistency Apache Spark Redshift Spectrum Azure Synapse Analytics SnowflakeDB

Podcast Episode

BigQuery Presto

Podcast Episode

Apache Kafka Cartesian Product kSQLDB

Podcast Episode

Eventador

Podcast Episode

Materialize

Podcast Episode

Common Table Expressions Lambda Architecture Kappa Architecture Apache Flink

Podcast Episode

Reinforcement Learning Cloudformation GDPR

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary Data warehouses have gone through many transformations, from standard relational databases on powerful hardware, to column oriented storage engines, to the current generation of cloud-native analytical engines. SnowflakeDB has been leading the charge to take advantage of cloud services that simplify the separation of compute and storage. In this episode Kent Graziano, chief technical evangelist for SnowflakeDB, explains how it is differentiated from other managed platforms and traditional data warehouse engines, the features that allow you to scale your usage dynamically, and how it allows for a shift in your workflow from ETL to ELT. If you are evaluating your options for building or migrating a data platform, then this is definitely worth a listen.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. And for your machine learning workloads, they just announced dedicated CPU instances. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. And don’t forget to thank them for their continued support of this show! You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data management. For even more opportunities to meet, listen, and learn from your peers you don’t want to miss out on this year’s conference season. We have partnered with organizations such as O’Reilly Media and the Python Software Foundation. Upcoming events include the Software Architecture Conference in NYC and PyCOn US in Pittsburgh. Go to dataengineeringpodcast.com/conferences to learn more about these and other events, and take advantage of our partner discounts to save money when you register today. Your host is Tobias Macey and today I’m interviewing Kent Graziano about SnowflakeDB, the cloud-native data warehouse

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what SnowflakeDB is for anyone who isn’t familiar with it?

How does it compare to the other available platforms for data warehousing? How does it differ from traditional data warehouses?

How does the performance and flexibility affect the data modeling requirements?

Snowflake is one of the data stores that is enabling the shift from an ETL to an ELT workflow. What are the features that allow for that approach and what are some of the challenges that it introduces? Can you describe how the platform is architected and some of the ways that it has evolved as it has grown in popularity?

What are some of the current limitations that you are struggling with?

For someone getting started with Snowflake what is involved with loading data into the platform?

What is their workflow for allocating and scaling compute capacity and running anlyses?

One of the interesting features enabled by your architecture is data sharing. What are some of the most interesting or unexpected uses of that capability that you have seen? What are some other features or use cases for Snowflake that are not as well known or publicized which you think users should know about? When is SnowflakeDB the wrong choice? What are some of the plans for the future of SnowflakeDB?

Contact Info

LinkedIn Website @KentGraziano on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

SnowflakeDB

Free Trial Stack Overflow

Data Warehouse Oracle DB MPP == Massively Parallel Processing Shared Nothing Architecture Multi-Cluster Shared Data Architecture Google BigQuery AWS Redshift AWS Redshift Spectrum Presto

Podcast Episode

SnowflakeDB Semi-Structured Data Types Hive ACID == Atomicity, Consistency, Isolation, Durability 3rd Normal Form Data Vault Modeling Dimensional Modeling JSON AVRO Parquet SnowflakeDB Virtual Warehouses CRM == Customer Relationship Management Master Data Management

Podcast Episode

FoundationDB

Podcast Episode

Apache Spark

Podcast Episode

SSIS == SQL Server Integration Services Talend Informatica Fivetran

Podcast Episode

Matillion Apache Kafka Snowpipe Snowflake Data Exchange OLTP == Online Transaction Processing GeoJSON Snowflake Documentation SnowAlert Splunk Data Catalog

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary The scale and complexity of the systems that we build to satisfy business requirements is increasing as the available tools become more sophisticated. In order to bridge the gap between legacy infrastructure and evolving use cases it is necessary to create a unifying set of components. In this episode Dipti Borkar explains how the emerging category of data orchestration tools fills this need, some of the existing projects that fit in this space, and some of the ways that they can work together to simplify projects such as cloud migration and hybrid cloud environments. It is always useful to get a broad view of new trends in the industry and this was a helpful perspective on the need to provide mechanisms to decouple physical storage from computing capacity.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. And for your machine learning workloads, they just announced dedicated CPU instances. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. And don’t forget to thank them for their continued support of this show! This week’s episode is also sponsored by Datacoral, an AWS-native, serverless, data infrastructure that installs in your VPC. Datacoral helps data engineers build and manage the flow of data pipelines without having to manage any infrastructure, meaning you can spend your time invested in data transformations and business needs, rather than pipeline maintenance. Raghu Murthy, founder and CEO of Datacoral built data infrastructures at Yahoo! and Facebook, scaling from terabytes to petabytes of analytic data. He started Datacoral with the goal to make SQL the universal data programming language. Visit dataengineeringpodcast.com/datacoral today to find out more. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data management. For even more opportunities to meet, listen, and learn from your peers you don’t want to miss out on this year’s conference season. We have partnered with organizations such as O’Reilly Media, Dataversity, Corinium Global Intelligence, Alluxio, and Data Council. Upcoming events include the combined events of the Data Architecture Summit and Graphorum, the Data Orchestration Summit, and Data Council in NYC. Go to dataengineeringpodcast.com/conferences to learn more about these and other events, and take advantage of our partner discounts to save money when you register today. Your host is Tobias Macey and today I’m interviewing Dipti Borkark about data orchestration and how it helps in migrating data workloads to the cloud

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what you mean by the term "Data Orchestration"?

How does it compare to the concept of "Data Virtualization"? What are some of the tools and platforms that fit under that umbrella?

What are some of the motivations for organizations to use the cloud for their data oriented workloads?

What are they giving up by using cloud resources in place of on-premises compute?

For businesses that have invested heavily in their own datacenters, what are some ways that they can begin to replicate some of the benefits of cloud environments? What are some of the common patterns for cloud migration projects and what challenges do they present?

Do you have advice on useful metrics to track for determining project completion or success criteria?

How do businesses approach employee education for designing and implementing effective systems for achieving their migration goals? Can you talk through some of the ways that different data orchestration tools can be composed together for a cloud migration effort?

What are some of the common pain points that organizations encounter when working on hybrid implementations?

What are some of the missing pieces in the data orchestration landscape?

Are there any efforts that you are aware of that are aiming to fill those gaps?

Where is the data orchestration market heading, and what are some industry trends that are driving it?

What projects are you most interested in or excited by?

For someone who wants to learn more about data orchestration and the benefits the technologies can provide, what are some resources that you would recommend?

Contact Info

LinkedIn @dborkar on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

Thank you for listening! Don’t forget to check out our other show, Podcast.init to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat

Links

Alluxio

Podcast Episode

UC San Diego Couchbase Presto

Podcast Episode

Spark SQL Data Orchestration Data Virtualization PyTorch

Podcast.init Episode

Rook storage orchestration PySpark MinIO

Podcast Episode

Kubernetes Openstack Hadoop HDFS Parquet Files

Podcast Episode

ORC Files Hive Metastore Iceberg Table Format

Podcast Episode

Data Orchestration Summit Star Schema Snowflake Schema Data Warehouse Data Lake Teradata

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary Managing a data warehouse can be challenging, especially when trying to maintain a common set of patterns. Dataform is a platform that helps you apply engineering principles to your data transformations and table definitions, including unit testing SQL scripts, defining repeatable pipelines, and adding metadata to your warehouse to improve your team’s communication. In this episode CTO and co-founder of Dataform Lewis Hemens joins the show to explain his motivation for creating the platform and company, how it works under the covers, and how you can start using it today to get your data warehouse under control.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. And for your machine learning workloads, they just announced dedicated CPU instances. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. And don’t forget to thank them for their continued support of this show! This week’s episode is also sponsored by Datacoral. They provide an AWS-native, serverless, data infrastructure that installs in your VPC. Datacoral helps data engineers build and manage the flow of data pipelines without having to manage any infrastructure. Datacoral’s customers report that their data engineers are able to spend 80% of their work time invested in data transformations, rather than pipeline maintenance. Raghu Murthy, founder and CEO of Datacoral built data infrastructures at Yahoo! and Facebook, scaling from mere terabytes to petabytes of analytic data. He started Datacoral with the goal to make SQL the universal data programming language. Visit Datacoral.com today to find out more. Are you working on data, analytics, or AI using platforms such as Presto, Spark, or Tensorflow? Check out the Data Orchestration Summit on November 7 at the Computer History Museum in Mountain View. This one day conference is focused on the key data engineering challenges and solutions around building analytics and AI platforms. Attendees will hear from companies including Walmart, Netflix, Google, and DBS Bank on how they leveraged technologies such as Alluxio, Presto, Spark, Tensorflow, and you will also hear from creators of open source projects including Alluxio, Presto, Airflow, Iceberg, and more! Use discount code PODCAST for 25% off of your ticket, and the first five people to register get free tickets! Register now as early bird tickets are ending this week! Attendees will takeaway learnings, swag, a free voucher to visit the museum, and a chance to win the latest ipad Pro! You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data management. For even more opportunities to meet, listen, and learn from your peers you don’t want to miss out on this year’s conference season. We have partnered with organizations such as O’Reilly Media, Dataversity, Corinium Global Intelligence, Alluxio, and Data Council. Upcoming events include the combined events of the Data Architecture Summit and Graphorum, the Data Orchestration Summit, and Data Council in NYC. Go to dataengineeringpodcast.com/conferences to learn more about these and other events, and take advantage of our partner discounts to save money when you register today. Your host is Tobias Macey and today I’m interviewing Lewis Hemens about DataForm, a platform that helps analy

Summary In recent years the traditional approach to building data warehouses has shifted from transforming records before loading, to transforming them afterwards. As a result, the tooling for those transformations needs to be reimagined. The data build tool (dbt) is designed to bring battle tested engineering practices to your analytics pipelines. By providing an opinionated set of best practices it simplifies collaboration and boosts confidence in your data teams. In this episode Drew Banin, creator of dbt, explains how it got started, how it is designed, and how you can start using it today to create reliable and well-tested reports in your favorite data warehouse.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. And for your machine learning workloads, they just announced dedicated CPU instances. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. And don’t forget to thank them for their continued support of this show! Understanding how your customers are using your product is critical for businesses of any size. To make it easier for startups to focus on delivering useful features Segment offers a flexible and reliable data infrastructure for your customer analytics and custom events. You only need to maintain one integration to instrument your code and get a future-proof way to send data to over 250 services with the flip of a switch. Not only does it free up your engineers’ time, it lets your business users decide what data they want where. Go to dataengineeringpodcast.com/segmentio today to sign up for their startup plan and get $25,000 in Segment credits and $1 million in free software from marketing and analytics companies like AWS, Google, and Intercom. On top of that you’ll get access to Analytics Academy for the educational resources you need to become an expert in data analytics for measuring product-market fit. You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data management. For even more opportunities to meet, listen, and learn from your peers you don’t want to miss out on this year’s conference season. We have partnered with organizations such as O’Reilly Media, Dataversity, and the Open Data Science Conference. Go to dataengineeringpodcast.com/conferences to learn more and take advantage of our partner discounts when you register. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Drew Banin about DBT, the Data Build Tool, a toolkit for building analytics the way that developers build applications

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what DBT is and your motivation for creating it? Where does it fit in the overall landscape of data tools and the lifecycle of data in an analytics pipeline? Can you talk through the workflow for someone using DBT? One of the useful features of DBT for stability of analytics is the ability to write and execute tests. Can you explain how those are implemented? The packaging capabilities are beneficial for enabling collaboration. Can you talk through how the packaging system is implemented?

Are these packages driven by Fishtown Analytics or the dbt community?

What are the limitations of modeling everything as a SELECT statement? Making SQL code reusable is notoriously difficult. How does the Jinja templating of DBT address this issue and what are the shortcomings?

What are your thoughts on higher level approaches to SQL that compile down to the specific statements?

Can you explain how DBT is implemented and how the design has evolved since you first began working on it? What are some of the features of DBT that are often overlooked which you find particularly useful? What are some of the most interesting/unexpected/innovative ways that you have seen DBT used? What are the additional features that the commercial version of DBT provides? What are some of the most useful or challenging lessons that you have learned in the process of building and maintaining DBT? When is it the wrong choice? What do you have planned for the future of DBT?

Contact Info

Email @drebanin on Twitter drebanin on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

DBT Fishtown Analytics 8Tracks Internet Radio Redshift Magento Stitch Data Fivetran Airflow Business Intelligence Jinja template language BigQuery Snowflake Version Control Git Continuous Integration Test Driven Development Snowplow Analytics

Podcast Episode

dbt-utils We Can Do Better Than SQL blog post from EdgeDB EdgeDB Looker LookML

Podcast Interview

Presto DB

Podcast Interview

Spark SQL Hive Azure SQL Data Warehouse Data Warehouse Data Lake Data Council Conference Slowly Changing Dimensions dbt Archival Mode Analytics Periscope BI dbt docs dbt repository

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast

Summary

When your data lives in multiple locations, belonging to at least as many applications, it is exceedingly difficult to ask complex questions of it. The default way to manage this situation is by crafting pipelines that will extract the data from source systems and load it into a data lake or data warehouse. In order to make this situation more manageable and allow everyone in the business to gain value from the data the folks at Dremio built a self service data platform. In this episode Tomer Shiran, CEO and co-founder of Dremio, explains how it fits into the modern data landscape, how it works under the hood, and how you can start using it today to make your life easier.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Tomer Shiran about Dremio, the open source data as a service platform

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Dremio is and how the project and business got started?

What was the motivation for keeping your primary product open source? What is the governance model for the project?

How does Dremio fit in the current landscape of data tools?

What are some use cases that Dremio is uniquely equipped to support? Do you think that Dremio obviates the need for a data warehouse or large scale data lake?

How is Dremio architected internally?

How has that architecture evolved from when it was first built?

There are a large array of components (e.g. governance, lineage, catalog) built into Dremio that are often found in dedicated products. What are some of the strategies that you have as a business and development team to manage and integrate the complexity of the product?

What are the benefits of integrating all of those capabilities into a single system? What are the drawbacks?

One of the useful features of Dremio is the granular access controls. Can you discuss how those are implemented and controlled? For someone who is interested in deploying Dremio to their environment what is involved in getting it installed?

What are the scaling factors?

What are some of the most exciting features that have been added in recent releases? When is Dremio the wrong choice? What have been some of the most challenging aspects of building, maintaining, and growing the technical and business platform of Dremio? What do you have planned for the future of Dremio?

Contact Info

Tomer

@tshiran on Twitter LinkedIn

Dremio

Website @dremio on Twitter dremio on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Dremio MapR Presto Business Intelligence Arrow Tableau Power BI Jupyter OLAP Cube Apache Foundation Hadoop Nikon DSLR Spark ETL (Extract, Transform, Load) Parquet Avro K8s Helm Yarn Gandiva Initiative for Apache Arrow LLVM TLS

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

A data lake can be a highly valuable resource, as long as it is well built and well managed. Unfortunately, that can be a complex and time-consuming effort, requiring specialized knowledge and diverting resources from your primary business. In this episode Yoni Iny, CTO of Upsolver, discusses the various components that are necessary for a successful data lake project, how the Upsolver platform is architected, and how modern data lakes can benefit your organization.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Yoni Iny about Upsolver, a data lake platform that lets developers integrate and analyze streaming data with ease

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what Upsolver is and how it got started?

What are your goals for the platform?

There are a lot of opinions on both sides of the data lake argument. When is it the right choice for a data platform?

What are the shortcomings of a data lake architecture?

How is Upsolver architected?

How has that architecture changed over time? How do you manage schema validation for incoming data? What would you do differently if you were to start over today?

What are the biggest challenges at each of the major stages of the data lake? What is the workflow for a user of Upsolver and how does it compare to a self-managed data lake? When is Upsolver the wrong choice for an organization considering implementation of a data platform? Is there a particular scale or level of data maturity for an organization at which they would be better served by moving management of their data lake in house? What features or improvements do you have planned for the future of Upsolver?

Contact Info

Yoni

yoniiny on GitHub LinkedIn

Upsolver

Website @upsolver on Twitter LinkedIn Facebook

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Upsolver Data Lake Israeli Army Data Warehouse Data Engineering Podcast Episode About Data Curation Three Vs Kafka Spark Presto Drill Spot Instances Object Storage Cassandra Redis Latency Avro Parquet ORC Data Engineering Podcast Episode About Data Serialization Formats SSTables Run Length Encoding CSV (Comma Separated Values) Protocol Buffers Kinesis ETL DevOps Prometheus Cloudwatch DataDog InfluxDB SQL Pandas Confluent KSQL

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

Business intelligence is a necessity for any organization that wants to be able to make informed decisions based on the data that they collect. Unfortunately, it is common for different portions of the business to build their reports with different assumptions, leading to conflicting views and poor choices. Looker is a modern tool for building and sharing reports that makes it easy to get everyone on the same page. In this episode Daniel Mintz explains how the product is architected, the features that make it easy for any business user to access and explore their reports, and how you can use it for your organization today.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Daniel Mintz about Looker, a a modern data platform that can serve the data needs of an entire company

Interview

Introduction How did you get involved in the area of data management? Can you start by describing what Looker is and the problem that it is aiming to solve?

How do you define business intelligence?

How is Looker unique from other approaches to business intelligence in the enterprise?

How does it compare to open source platforms for BI?

Can you describe the technical infrastructure that supports Looker? Given that you are connecting to the customer’s data store, how do you ensure sufficient security? For someone who is using Looker, what does their workflow look like?

How does that change for different user roles (e.g. data engineer vs sales management)

What are the scaling factors for Looker, both in terms of volume of data for reporting from, and for user concurrency? What are the most challenging aspects of building a business intelligence tool and company in the modern data ecosystem?

What are the portions of the Looker architecture that you would do differently if you were to start over today?

What are some of the most interesting or unusual uses of Looker that you have seen? What is in store for the future of Looker?

Contact Info

LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Looker Upworthy MoveOn.org LookML SQL Business Intelligence Data Warehouse Linux Hadoop BigQuery Snowflake Redshift DB2 PostGres ETL (Extract, Transform, Load) ELT (Extract, Load, Transform) Airflow Luigi NiFi Data Curation Episode Presto Hive Athena DRY (Don’t Repeat Yourself) Looker Action Hub Salesforce Marketo Twilio Netscape Navigator Dynamic Pricing Survival Analysis DevOps BigQuery ML Snowflake Data Sharehouse

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

With the growth of the Hadoop ecosystem came a proliferation of implementations for the Hive table format. Unfortunately, with no formal specification, each project works slightly different which increases the difficulty of integration across systems. The Hive format is also built with the assumptions of a local filesystem which results in painful edge cases when leveraging cloud object storage for a data lake. In this episode Ryan Blue explains how his work on the Iceberg table format specification and reference implementation has allowed Netflix to improve the performance and simplify operations for their S3 data lake. This is a highly detailed and technical exploration of how a well-engineered metadata layer can improve the speed, accuracy, and utility of large scale, multi-tenant, cloud-native data platforms.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Ryan Blue about Iceberg, a Netflix project to implement a high performance table format for batch workloads

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Iceberg is and the motivation for creating it?

Was the project built with open-source in mind or was it necessary to refactor it from an internal project for public use?

How has the use of Iceberg simplified your work at Netflix? How is the reference implementation architected and how has it evolved since you first began work on it?

What is involved in deploying it to a user’s environment?

For someone who is interested in using Iceberg within their own environments, what is involved in integrating it with their existing query engine?

Is there a migration path for pre-existing tables into the Iceberg format?

How is schema evolution managed at the file level?

How do you handle files on disk that don’t contain all of the fields specified in a table definition?

One of the complicated problems in data modeling is managing table partitions. How does Iceberg help in that regard? What are the unique challenges posed by using S3 as the basis for a data lake?

What are the benefits that outweigh the difficulties?

What have been some of the most challenging or contentious details of the specification to define?

What are some things that you have explicitly left out of the specification?

What are your long-term goals for the Iceberg specification?

Do you anticipate the reference implementation continuing to be used and maintained?

Contact Info

rdblue on GitHub LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Iceberg Reference Implementation Iceberg Table Specification Netflix Hadoop Cloudera Avro Parquet Spark S3 HDFS Hive ORC S3mper Git Metacat Presto Pig DDL (Data Definition Language) Cost-Based Optimization

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

Elasticsearch is a powerful tool for storing and analyzing data, but when using it for logs and other time oriented information it can become problematic to keep all of your history. Chaos Search was started to make it easy for you to keep all of your data and make it usable in S3, so that you can have the best of both worlds. In this episode the CTO, Thomas Hazel, and VP of Product, Pete Cheslock, describe how they have built a platform to let you keep all of your history, save money, and reduce your operational overhead. They also explain some of the types of data that you can use with Chaos Search, how to load it into S3, and when you might want to choose it over Amazon Athena for our serverless data analysis.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $/0 credit and launch a new server in under a minute. You work hard to make sure that your data is reliable and accurate, but can you say the same about the deployment of your machine learning models? The Skafos platform from Metis Machine was built to give your data scientists the end-to-end support that they need throughout the machine learning lifecycle. Skafos maximizes interoperability with your existing tools and platforms, and offers real-time insights and the ability to be up and running with cloud-based production scale infrastructure instantaneously. Request a demo at dataengineeringpodcast.com/metis-machine to learn more about how Metis Machine is operationalizing data science. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Pete Cheslock and Thomas Hazel about Chaos Search and their effort to bring historical depth to your Elasticsearch data

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what you have built at Chaos Search and the problems that you are trying to solve with it?

What types of data are you focused on supporting? What are the challenges inherent to scaling an elasticsearch infrastructure to large volumes of log or metric data?

Is there any need for an Elasticsearch cluster in addition to Chaos Search? For someone who is using Chaos Search, what mechanisms/formats would they use for loading their data into S3? What are the benefits of implementing the Elasticsearch API on top of your data in S3 as opposed to using systems such as Presto or Drill to interact with the same information via SQL? Given that the S3 API has become a de facto standard for many other object storage platforms, what would be involved in running Chaos Search on data stored outside of AWS? What mechanisms do you use to allow for such drastic space savings of indexed data in S3 versus in an Elasticsearch cluster? What is the system architecture that you have built to allow for querying terabytes of data in S3?

What are the biggest contributors to query latency and what have you done to mitigate them?

What are the options for access control when running queries against the data stored in S3? What are some of the most interesting or unexpected uses of Chaos Search and access to large amounts of historical log information that you have seen? What are your plans for the future of Chaos Search?

Contact Info

Pete Cheslock

@petecheslock on Twitter Website

Thomas Hazel

@thomashazel on Twitter LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tool

Summary

Most businesses end up with data in a myriad of places with varying levels of structure. This makes it difficult to gain insights from across departments, projects, or people. Presto is a distributed SQL engine that allows you to tie all of your information together without having to first aggregate it all into a data warehouse. Kamil Bajda-Pawlikowski co-founded Starburst Data to provide support and tooling for Presto, as well as contributing advanced features back to the project. In this episode he describes how Presto is architected, how you can use it for your analytics, and the work that he is doing at Starburst Data.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Kamil Bajda-Pawlikowski about Presto and his experiences with supporting it at Starburst Data

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Presto is?

What are some of the common use cases and deployment patterns for Presto?

How does Presto compare to Drill or Impala? What is it about Presto that led you to building a business around it? What are some of the most challenging aspects of running and scaling Presto? For someone who is using the Presto SQL interface, what are some of the considerations that they should keep in mind to avoid writing poorly performing queries?

How does Presto represent data for translating between its SQL dialect and the API of the data stores that it interfaces with?

What are some cases in which Presto is not the right solution? What types of support have you found to be the most commonly requested? What are some of the types of tooling or improvements that you have made to Presto in your distribution?

What are some of the notable changes that your team has contributed upstream to Presto?

Contact Info

Website E-mail Twitter – @starburstdata Twitter – @prestodb

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Starburst Data Presto Hadapt Hadoop Hive Teradata PrestoCare Cost Based Optimizer ANSI SQL Spill To Disk Tempto Benchto Geospatial Functions Cassandra Accumulo Kafka Redis PostGreSQL

The intro and outro music is from The Hug by The Freak Fandango Orchestra / {CC BY-SA](http://creativecommons.org/licenses/by-sa/3.0/)?utm_source=rss&utm_medium=rss Support Data Engineering Podcast

In this podcast, Justin Borgman talks about his journey of starting a data science start, doing an exit, and jumping on another one. The session is filled with insights for leadership, looking for entrepreneurial wisdom to get on a data-driven journey.

Timeline: 0:28 Justin's journey. 3:22 Taking the plunge to start a new company. 5:49 Perception vs. reality of starting a data warehouse company. 8:15 Bringing in something new to the IT legacy. 13:20 Getting your first few customers. 16:16 Right moment for a data warehouse company to look for a new venture. 18:20 Right person to have as a co-founder. 20:29 Advantages of going seed vs. series A. 22:13 When is a company ready for seeding or series A? 24:40 Who's a good adviser? 26:35 Exiting Teradata. 28:54 Teradata to starting a new company. 31:24 Excitement of starting something from scratch. 32:24 What is Starburst? 37:15 Presto, a great engine for cloud platforms. 40:30 How can a company get started with Presto. 41:50 Health of enterprise data. 44:15 Where does Presto not fit in? 45:19 Future of enterprise data. 46:36 Drawing parallels between proprietary space and open source space. 49:02 Does align with open-source gives a company a better chance in seeding. 51:44 John's ingredients for success. 54:05 John's favorite reads. 55:01 Key takeaways.

Paul's Recommended Read: The Outsiders Paperback – S. E. Hinton amzn.to/2Ai84Gl

Podcast Link: https://futureofdata.org/running-a-data-science-startup-one-decision-at-a-time-futureofdata-podcast/

Justin's BIO: Justin has spent the better part of a decade in senior executive roles building new businesses in the data warehousing and analytics space. Before co-founding Starburst, Justin was Vice President and General Manager at Teradata (NYSE: TDC), where he was responsible for the company’s portfolio of Hadoop products. Prior to joining Teradata, Justin was co-founder and CEO of Hadapt, the pioneering "SQL-on-Hadoop" company that transformed Hadoop from file system to analytic database accessible to anyone with a BI tool. Teradata acquired Hadapt in 2014.

Justin earned a BS in Computer Science from the University of Massachusetts at Amherst and an MBA from the Yale School of Management.

About #Podcast:

FutureOfData podcast is a conversation starter to bring leaders, influencers, and lead practitioners to discuss their journey to create the data-driven future.

Want to sponsor? Email us @ [email protected]

Keywords:

FutureOfData #DataAnalytics #Leadership #Podcast #BigData #Strategy

Summary With the wealth of formats for sending and storing data it can be difficult to determine which one to use. In this episode Doug Cutting, creator of Avro, and Julien Le Dem, creator of Parquet, dig into the different classes of serialization formats, what their strengths are, and how to choose one for your workload. They also discuss the role of Arrow as a mechanism for in-memory data sharing and how hardware evolution will influence the state of the art for data formats.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers This is your host Tobias Macey and today I’m interviewing Julien Le Dem and Doug Cutting about data serialization formats and how to pick the right one for your systems.

Interview

Introduction How did you first get involved in the area of data management? What are the main serialization formats used for data storage and analysis? What are the tradeoffs that are offered by the different formats? How have the different storage and analysis tools influenced the types of storage formats that are available? You’ve each developed a new on-disk data format, Avro and Parquet respectively. What were your motivations for investing that time and effort? Why is it important for data engineers to carefully consider the format in which they transfer their data between systems?

What are the switching costs involved in moving from one format to another after you have started using it in a production system?

What are some of the new or upcoming formats that you are each excited about? How do you anticipate the evolving hardware, patterns, and tools for processing data to influence the types of storage formats that maintain or grow their popularity?

Contact Information

Doug:

cutting on GitHub Blog @cutting on Twitter

Julien

Email @J_ on Twitter Blog julienledem on GitHub

Links

Apache Avro Apache Parquet Apache Arrow Hadoop Apache Pig Xerox Parc Excite Nutch Vertica Dremel White Paper

Twitter Blog on Release of Parquet

CSV XML Hive Impala Presto Spark SQL Brotli ZStandard Apache Drill Trevni Apache Calcite

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast