talk-data.com talk-data.com

Topic

data

5765

tagged

Activity Trend

3 peak/qtr
2020-Q1 2026-Q1

Activities

5765 activities · Newest first

97 Things Every Data Engineer Should Know

Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail

Expert Data Modeling with Power BI

Expert Data Modeling with Power BI provides a comprehensive guide to creating effective and optimized data models using Microsoft Power BI. This book will teach you everything you need to know, from connecting to data sources to setting up complex models that enable insightful reporting and business analytics. What this Book will help me do Gain expertise in implementing virtual tables and time intelligence functionalities in Power BI's DAX language. Identify and correctly set up Dimension and Fact tables using the Power Query Editor interface. Master advanced data preparation techniques to build efficient Star Schemas for modeling. Apply best practices for preparing and modeling data for real-world business cases. Become proficient in advanced features like aggregations, incremental refresh, and row-level security. Author(s) Soheil Bakhshi is a seasoned Power BI expert and author with years of experience in business intelligence and analytics. His practical knowledge of data modeling and approachable writing style make complex concepts understandable. Soheil's passion for empowering users to harness the full potential of Power BI is evident through his clear guidance and real-world examples. Who is it for? This book is perfect for business intelligence developers, data analysts, and advanced users of Power BI who aim to deepen their understanding of data modeling. It assumes a familiarity with Power BI's basic functions and core concepts like Star Schema. If you're looking to refine your modeling practices and create versatile, dynamic solutions, this resource is for you.

Machine Learning for Oracle Database Professionals: Deploying Model-Driven Applications and Automation Pipelines

Database developers and administrators will use this book to learn how to deploy machine learning models in Oracle Database and in Oracle’s Autonomous Database cloud offering. The book covers the technologies that make up the Oracle Machine Learning (OML) platform, including OML4SQL, OML Notebooks, OML4R, and OML4Py. The book focuses on Oracle Machine Learning as part of the Oracle Autonomous Database collaborative environment. Also covered are advanced topics such as delivery and automation pipelines. Throughout the book you will find practical details and hand-on examples showing you how to implement machine learning and automate deployment of machine learning. Discussion around the examples helps you gain a conceptual understanding of machine learning. Important concepts discussed include the methods involved, the algorithms to choose from, and mechanisms for process and deployment. Seasoned database professionals looking to make the leap into machine learning as a growth path will find much to like in this book as it helps you step up and use your current knowledge of Oracle Database to transition into providing machine learning solutions. What You Will Learn Use the Oracle Machine Learning (OML) Notebooks for data visualization and machine learning model building and evaluation Understand Oracle offerings for machine learning Develop machine learning with Oracle database using the built-in machine learning packages Develop and deploy machine learning models using OML4SQL and OML4R Leverage the Oracle Autonomous Database and its collaborative environment for Oracle Machine Learning Develop and deploy machine learning projects in Oracle Autonomous Database Build an automated pipeline that can detect and handle changes in data/model performance Who This Book Is For Database developers and administrators who want to learn about machine learning, developers who want to build models and applications using Oracle Database’s built-in machine learning feature set, and administrators tasked with supporting applications on Oracle Database that make use of the Oracle Machine Learning feature set

Azure Data Factory by Example: Practical Implementation for Data Engineers

Data engineers who need to hit the ground running will use this book to build skills in Azure Data Factory v2 (ADF). The tutorial-first approach to ADF taken in this book gets you working from the first chapter, explaining key ideas naturally as you encounter them. From creating your first data factory to building complex, metadata-driven nested pipelines, the book guides you through essential concepts in Microsoft’s cloud-based ETL/ELT platform. It introduces components indispensable for the movement and transformation of data in the cloud. Then it demonstrates the tools necessary to orchestrate, monitor, and manage those components. The hands-on introduction to ADF found in this book is equally well-suited to data engineers embracing their first ETL/ELT toolset as it is to seasoned veterans of Microsoft’s SQL Server Integration Services (SSIS). The example-driven approach leads you through ADF pipeline construction from the ground up, introducing important ideas and making learning natural and engaging. SSIS users will find concepts with familiar parallels, while ADF-first readers will quickly master those concepts through the book’s steady building up of knowledge in successive chapters. Summaries of key concepts at the end of each chapter provide a ready reference that you can return to again and again. What You Will Learn Create pipelines, activities, datasets, and linked services Build reusable components using variables, parameters, and expressions Move data into and around Azure services automatically Transform data natively using ADF data flows and Power Query data wrangling Master flow-of-control and triggers for tightly orchestrated pipeline execution Publish and monitor pipelines easily and with confidence Who This Book Is For Data engineers and ETL developers taking their first steps in Azure Data Factory, SQL Server Integration Services users making the transition toward doing ETL in Microsoft’s Azure cloud, and SQL Server database administrators involved in data warehousing and ETL operations

IBM Spectrum Scale Immutability Introduction, Configuration Guidance, and Use Cases

This IBM Redpaper™ publication introduces the IBM Spectrum Scale immutability function. It shows how to set it up and presents different ways for managing immutable and append-only files. This publication also provides guidance for implementing IT security aspects in an IBM Spectrum Scale cluster by addressing regulatory requirements. It also describes two typical use cases for managing immutable files. One use case involves applications that manage file immutability; the other use case presents a solution to automatically set files to immutable within a IBM Spectrum Scale immutable fileset.

JMP for Mixed Models

Discover the power of mixed models with JMP and JMP Pro. Mixed models are now the mainstream method of choice for analyzing experimental data. Why? They are arguably the most straightforward and powerful way to handle correlated observations in designed experiments. Reaching well beyond standard linear models, mixed models enable you to make accurate and precise inferences about your experiments and to gain deeper understanding of sources of signal and noise in the system under study. Well-formed fixed and random effects generalize well and help you make the best data-driven decisions. JMP for Mixed Models brings together two of the strongest traditions in SAS software: mixed models and JMP. JMP’s groundbreaking philosophy of tight integration of statistics with dynamic graphics is an ideal milieu within which to learn and apply mixed models, also known as hierarchical linear or multilevel models. If you are a scientist or engineer, the methods described herein can revolutionize how you analyze experimental data without the need to write code. Inside you’ll find a rich collection of examples and a step-by-step approach to mixed model mastery. Topics include: Learning how to appropriately recognize, set up, and interpret fixed and random effects Extending analysis of variance (ANOVA) and linear regression to numerous mixed model designs Understanding how degrees of freedom work using Skeleton ANOVA Analyzing randomized block, split-plot, longitudinal, and repeated measures designs Introducing more advanced methods such as spatial covariance and generalized linear mixed models Simulating mixed models to assess power and other important sampling characteristics Providing a solid framework for understanding statistical modeling in general Improving perspective on modern dilemmas around Bayesian methods, p-values, and causal inference

Intermittent Demand Forecasting

INTERMITTENT DEMAND FORECASTING The first text to focus on the methods and approaches of intermittent, rather than fast, demand forecasting Intermittent Demand Forecasting is for anyone who is interested in improving forecasts of intermittent demand products, and enhancing the management of inventories. Whether you are a practitioner, at the sharp end of demand planning, a software designer, a student, an academic teaching operational research or operations management courses, or a researcher in this field, we hope that the book will inspire you to rethink demand forecasting. If you do so, then you can contribute towards significant economic and environmental benefits. No prior knowledge of intermittent demand forecasting or inventory management is assumed in this book. The key formulae are accompanied by worked examples to show how they can be implemented in practice. For those wishing to understand the theory in more depth, technical notes are provided at the end of each chapter, as well as an extensive and up-to-date collection of references for further study. Software developments are reviewed, to give an appreciation of the current state of the art in commercial and open source software. “Intermittent demand forecasting may seem like a specialized area but actually is at the center of sustainability efforts to consume less and to waste less. Boylan and Syntetos have done a superb job in showing how improvements in inventory management are pivotal in achieving this. Their book covers both the theory and practice of intermittent demand forecasting and my prediction is that it will fast become the bible of the field.” — Spyros Makridakis, Professor, University of Nicosia, and Director, Institute for the Future and the Makridakis Open Forecasting Center (MOFC). “We have been able to support our clients by adopting many of the ideas discussed in this excellent book, and implementing them in our software. I am sure that these ideas will be equally helpful for other supply chain software vendors and for companies wanting to update and upgrade their capabilities in forecasting and inventory management.” — Suresh Acharya, VP, Research and Development, Blue Yonder. “As product variants proliferate and the pace of business quickens, more and more items have intermittent demand. Boylan and Syntetos have long been leaders in extending forecasting and inventory methods to accommodate this new reality. Their book gathers and clarifies decades of research in this area, and explains how practitioners can exploit this knowledge to make their operations more efficient and effective.” — Thomas R. Willemain, Professor Emeritus, Rensselaer Polytechnic Institute.

IBM Spectrum Archive Enterprise Edition V1.3.1.2: Installation and Configuration Guide

This IBM® Redbooks® publication helps you with the planning, installation, and configuration of the new IBM Spectrum® Archive Enterprise Edition (EE) Version 1.3.1.2 for the IBM TS4500, IBM TS3500, IBM TS4300, and IBM TS3310 tape libraries. IBM Spectrum Archive Enterprise Edition enables the use of the LTFS for the policy management of tape as a storage tier in an IBM Spectrum Scale based environment. It helps encourage the use of tape as a critical tier in the storage environment. This is the ninth edition of IBM Spectrum Archive Installation and Configuration Guide. IBM Spectrum Archive EE can run any application that is designed for disk files on a physical tape media. IBM Spectrum Archive EE supports the IBM Linear Tape-Open (LTO) Ultrium 8, 7, 6, and 5 tape drives in IBM® TS3310, TS3500, TS4300, and TS4500 tape libraries. In addition, IBM TS1160, TS1155, TS1150, and TS1140 tape drives are supported in TS3500 and TS4500 tape library configurations. IBM Spectrum Archive EE can play a major role in reducing the cost of storage for data that does not need the access performance of primary disk. The use of IBM Spectrum Archive EE to replace disks with physical tape in tier 2 and tier 3 storage can improve data access over other storage solutions because it improves efficiency and streamlines management for files on tape. IBM Spectrum Archive EE simplifies the use of tape by making it transparent to the user and manageable by the administrator under a single infrastructure. This publication is intended for anyone who wants to understand more about IBM Spectrum Archive EE planning and implementation. This book is suitable for IBM customers, IBM Business Partners, IBM specialist sales representatives, and technical specialists.

Mastering Tableau 2021 - Third Edition

Tableau 2021 brings a wide range of tools and techniques for mastering data visualization and business intelligence. In this book, you will delve into the advanced methodologies to fully utilize Tableau's capabilities. Whether you're dealing with geo-spatial, time-series analytics, or complex dashboards, this resource provides expertise through real-world data challenges. What this Book will help me do Draw connections between multiple databases and create insightful Tableau dashboards. Master advanced data visualization techniques that lead to impactful storytelling. Understand Tableau's integration with programming languages such as Python and R. Analyze datasets with time-series and geo-spatial methods to gain predictive insights. Leverage Tableau Prep Builder for efficient data cleaning and transformation processes. Author(s) Marleen Meier and David Baldwin are seasoned professionals in business intelligence and data analytics. They bring years of practical experience and have helped numerous organizations worldwide transform their data visualization strategies using Tableau. Their collaborative approach ensures a comprehensive, beginner to advanced learning experience. Who is it for? This book is perfect for business intelligence analysts, data analysts, and industry professionals who are already familiar with Tableau's basics and wish to expand their knowledge. It provides advanced techniques and implementations of Tableau for improving data storytelling and dashboard performance. Readers seeking to connect Tableau with external programming tools will also greatly benefit from this guide.

Database-Driven Web Development: Learn to Operate at a Professional Level with PERL and MySQL

Learn to operate at a professional level with HTML, CSS, DOM, JavaScript, PERL and the MySQL database. With plain language explanations and step-by-step examples, you will understand the key facets of web development that today’s employers are looking for. Encapsulating knowledge that is usually found in many books rather than one, this is your one-stop tutorial to becoming a web professional. You will learn how to use the PERL scripting language and the MySQL database to create powerful web applications. Each chapter will become progressively more challenging as you progress through experimentation and ultimately master database-driven web development via the web applications studied in the last chapters. Including practical tips and guidance gleaned from 20+ years of working as a web developer, Thomas Valentine provides you with all the information you need to prosper as a professional database-driven web professional. What You'll Learn Leverage standard web technologies to benefit a database-driven approach Create an effective web development workstation with databases in mind Use the PERL scripting language and the MySQL database effectively Maximize the Apache Web Server Who This Book Is For The primary audience for this book are those who know already know web development basics and web developers who want to master database driven web development. The skills required to understand the concepts put forth are a working knowledge of PERL and basic MySQL.

SAP HANA on IBM Power Systems Backup and Recovery Solutions

This IBM® Redpaper Redbooks publication provides guidance about a backup and recovery solution for SAP High-performance Analytic Appliance (HANA) running on IBM Power Systems. This publication provides case studies and how-to procedures that show backup and recovery scenarios. This publication provides information about how to protect data in an SAP HANA environment by using IBM Spectrum® Protect and IBM Spectrum Copy Data Manager. This publication focuses on the data protection solution, which is described through several scenarios. The information in this publication is distributed on an as-is basis without any warranty that is either expressed or implied. Support assistance for the use of this material is limited to situations where IBM Spectrum Scale or IBM Spectrum Protect are supported and entitled, and where the issues are specific to a blueprint implementation. The goal of the publication is to describe the best aspects and options for backup, snapshots, and restore of SAP HANA Multitenant Database Container (MDC) single and multi-tenant installations on IBM Power Systems by using theoretical knowledge, hands-on exercises, and documenting the findings through sample scenarios. This document provides resources about the following processes: Describing how to determine the best option, including SAP Landscape aspects to back up, snapshot, and restore of SAP HANA MDC single and multi-tenant installations based on IBM Spectrum Computing Suite, Red Hat Linux Relax and Recover (ReAR), and other products. Documenting key aspects, such as recovery time objective (RTO) and recovery point objective (RPO), backup impact (load, duration, scheduling), quantitative savings (for example, data deduplication), integration and catalog currency, and tips and tricks that are not covered in the product documentation. Using IBM Cloud® Object Storage and documenting how to use IBM Spectrum Protect to back up to the cloud. SAP HANA 2.0 SPS 05 has this feature that is built in natively. IBM Spectrum Protect for Enterprise Resource Planning (ERP) has this feature too. Documenting Linux ReaR to cover operating system (OS) backup because ReAR is used by most backup products, such as IBM Spectrum Protect and Symantec Endpoint Protection (SEP) to back up OSs. This publication targets technical readers including IT specialists, systems architects, brand specialists, sales teams, and anyone looking for a guide about how to implement the best options for SAP HANA backup and recovery on IBM Power Systems. Moreover, this publication provides documentation to transfer the how-to-skills to the technical teams and solution guidance to the sales team. This publication complements the documentation that is available at IBM Knowledge Center, and it aligns with the educational materials that are provided by IBM Garage™ for Systems Technical Education and Training.

IBM PowerVC Version 2.0 Introduction and Configuration

IBM® Power Virtualization Center (IBM® PowerVC™) is an advanced enterprise virtualization management offering for IBM Power Systems. This IBM Redbooks® publication introduces IBM PowerVC and helps you understand its functions, planning, installation, and setup. It also shows how IBM PowerVC can integrate with systems management tools such as Ansible or Terraform and that it also integrates well into a OpenShift container environment. IBM PowerVC Version 2.0.0 supports both large and small deployments, either by managing IBM PowerVM® that is controlled by the Hardware Management Console (HMC), or by IBM PowerVM NovaLink. With this capability, IBM PowerVC can manage IBM AIX®, IBM i, and Linux workloads that run on IBM POWER® hardware. IBM PowerVC is available as a Standard Edition, or as a Private Cloud Edition. IBM PowerVC includes the following features and benefits: Virtual image capture, import, export, deployment, and management Policy-based virtual machine (VM) placement to improve server usage Snapshots and cloning of VMs or volumes for backup or testing purposes Support of advanced storage capabilities such as IBM SVC vdisk mirroring of IBM Global Mirror Management of real-time optimization and VM resilience to increase productivity VM Mobility with placement policies to reduce the burden on IT staff in a simple-to-install and easy-to-use graphical user interface (GUI) Automated Simplified Remote Restart for improved availability of VMs ifor when a host is down Role-based security policies to ensure a secure environment for common tasks The ability to enable an administrator to enable Dynamic Resource Optimization on a schedule IBM PowerVC Private Cloud Edition includes all of the IBM PowerVC Standard Edition features and enhancements: A self-service portal that allows the provisioning of new VMs without direct system administrator intervention. There is an option for policy approvals for the requests that are received from the self-service portal. Pre-built deploy templates that are set up by the cloud administrator that simplify the deployment of VMs by the cloud user. Cloud management policies that simplify management of cloud deployments. Metering data that can be used for chargeback. This publication is for experienced users of IBM PowerVM and other virtualization solutions who want to understand and implement the next generation of enterprise virtualization management for Power Systems. Unless stated otherwise, the content of this publication refers to IBM PowerVC Version 2.0.0.

Architecting Data-Intensive SaaS Applications

Through explosive growth in the past decade, data now drives significant portions of our lives, from crowdsourced restaurant recommendations to AI systems identifying effective medical treatments. Software developers have unprecedented opportunity to build data applications that generate value from massive datasets across use cases such as customer 360, application health and security analytics, the IoT, machine learning, and embedded analytics. With this report, product managers, architects, and engineering teams will learn how to make key technical decisions when building data-intensive applications, including how to implement extensible data pipelines and share data securely. The report includes design considerations for making these decisions and uses the Snowflake Data Cloud to illustrate best practices. This report explores: Why data applications matter: Get an introduction to data applications and some of the most common use cases Evaluating platforms for building data apps: Evaluate modern data platforms to confidently consider the merits of potential solutions Building scalable data applications: Learn design patterns and best practices for storage, compute, and security Handling and processing data: Explore techniques and real-world examples for building data pipelines to support data applications Designing for data sharing: Learn best practices for sharing data in modern data applications

Distributed Data Systems with Azure Databricks

In 'Distributed Data Systems with Azure Databricks', you will explore the capabilities of Microsoft Azure Databricks as a platform for building and managing big data pipelines. Learn how to process, transform, and analyze data at scale while developing expertise in training distributed machine learning models and integrating them into enterprise workflows. What this Book will help me do Design and implement Extract, Transform, Load (ETL) pipelines using Azure Databricks. Conduct distributed training of machine learning models using TensorFlow and Horovod. Integrate Azure Databricks with Azure Data Factory for optimized data pipeline orchestration. Utilize Delta Engine for efficient querying and analysis of data within Delta Lake. Employ Databricks Structured Streaming to manage real-time production-grade data flows. Author(s) None Palacio is an experienced data engineer and cloud computing specialist, with extensive knowledge of the Microsoft Azure platform. With years of practical application of Databricks in enterprise settings, Palacio provides clear, actionable insights through relatable examples. They bring a passion for innovative solutions to the field of big data automation. Who is it for? This book is ideal for data engineers, machine learning engineers, and software developers looking to master Azure Databricks for large-scale data processing and analysis. Readers should have basic familiarity with cloud platforms, understanding of data pipelines, and a foundational grasp of Python and machine learning concepts. It is perfect for those wanting to create scalable and manageable data workflows.

Pro Power BI Theme Creation: JSON Stylesheets for Automated Dashboard Formatting

Use JSON theme files to standardize the look of Power BI dashboards and reports. This book shows how you can create theme files using the Power BI Desktop application to define high-level formatting attributes for dashboards as well as how to tailor detailed formatting specifications for individual dashboard elements in JSON files. Standardize the look of your dashboards and apply formatting consistently over all your reports. The techniques in this book provide you with tight control over the presentation of all aspects of the Power BI dashboards and reports that you create. Power BI theme files use JSON (JavaScript Object Notation) as their structure, so the book includes a brief introduction to JSON as well as how it applies to Power BI themes. The book further includes a complete reference to all the current formatting definitions and JSON structures that are at your disposal for creating JSON theme files. Finally, the book includes dozens of theme files, from the simple to the most complex, that you can adopt and adapt to suit your own requirements. What You Will Learn Produce designer output without manually formatting every individual visual in a Power BI dashboard Standardize presentation for families of dashboard types Switch presentation styles in a couple of clicks Save dozens, or hundreds, of hours laboriously formatting dashboards Define enterprise-wide presentation standards Retroactively apply standard styles to existing dashboards Who This Book Is For Power BI users who want to save time by defining standardized formatting for their dashboards and reports, IT professionals who want to create corporate standards of dashboard presentation, and marketing and communication specialists who want to set organizational standards for dashboard delivery

Interactive Dashboards and Data Apps with Plotly and Dash

This book, "Interactive Dashboards and Data Apps with Plotly and Dash", is a practical guide to building dynamic dashboards and applications using the Dash Python framework. It covers creating visualizations, integrating interactive controls, and deploying the apps, all without requiring JavaScript expertise. What this Book will help me do Master creating interactive data dashboards using Dash and Plotly. Understand how to integrate controls such as sliders and dropdowns into apps. Learn to use Plotly Express for visually representing data with ease. Develop capabilities to deploy a fully functional web app for data interaction. Understand how to use multi-page configurations and URLs for advanced apps. Author(s) None Dabbas is a seasoned Python developer with extensive expertise in data visualization and full-stack development. Drawing from real-world experience, None brings a practical approach to teaching, ensuring that learners understand not only how to build applications but why the approach works. Who is it for? This book is ideal for data analysts, engineers, and developers looking to enhance their visualization capabilities. If you are familiar with Python and have basic HTML skills, you will find this book accessible and rewarding. Beginners looking to explore advanced dashboard creation without JavaScript will also appreciate the clear approach.

IBM Power System IC922 Technical Overview and Introduction

This IBM® Redpaper publication is a comprehensive guide that covers the IBM Power System IC922 (9183-22X) server that uses IBM POWER9™ processor-based technology and supports Linux operating systems (OSs). The objective of this paper is to introduce the system offerings and their capacities and available features. The Power IC922 server is built to deliver powerful computing, scaling efficiency, and storage capacity in a cost-optimized design to meet the evolving data challenges of the artificial intelligence (AI) era. It includes the following features: High throughput and performance for high-value Linux workloads, such as inferencing data or storage-rich workloads, or cloud. Potentially low acquisition cost through system optimization, such as using industry standard memory and warranty. Two IBM POWER9 processor-based single-chip module (SCM) devices that provide high performance with 24, 32, or 40 fully activated cores and a maximum 2 TB of memory. Up to six NVIDIA T4 graphics processing unit (GPU) accelerators. Up to twenty-four 2.5-inch SAS/SATA drives. One dedicated and one shared 1 Gb Intelligent Platform Management Interface (IPMI) port.. This publication is for professionals who want to acquire a better understanding of IBM Power Systems products. The intended audience includes: Clients Sales and marketing professionals Technical support professionals IBM Business Partners Independent software vendors (ISVs) This paper expands the current set of IBM Power Systems documentation by providing a desktop reference that offers a detailed technical description of the Power IC922 server.

SAP S/4HANA Embedded Analytics: Experiences in the Field

Imagine you are a business user, consultant, or developer about to enter an SAP S/4HANA implementation project. You are well-versed with SAP’s product portfolio and you know that the preferred reporting option in S/4HANA is embedded analytics. But what exactly is embedded analytics? And how can it be implemented? And who can do it: a business user, a functional consultant specialized in financial or logistics processes? Or does a business intelligence expert or a programmer need to be involved? Good questions! This book will answer these questions, one by one. It will also take you on the same journey that the implementation team needs to follow for every reporting requirement that pops up: start with assessing a more standard option and only move on to a less standard option if the requirement cannot be fulfilled. In consecutive chapters, analytical apps delivered by SAP, apps created using Smart Business Services, and Analytical Queries developed either using tiles or in adevelopment environment are explained in detail with practical examples. The book also explains which option is preferred in which situation. The book covers topics such as in-memory computing, cloud, UX, OData, agile development, and more.Author Freek Keijzer writes from the perspective of an implementation consultant, focusing on functionality that has proven itself useful in the field. Practical examples are abundant, ranging from “codeless” to “hardcore coding.” What You Will Learn Know the difference between static reporting and interactive querying on real-time data Understand which options are available for analytics in SAP S/4HANA Understand which option to choose in which situation Know how to implement these options Who This Book is For SAP power users, functional consultants, developers

The Big Picture: How to Use Data Visualization to Make Better Decisions—Faster

Not a data expert? Here’s an engaging and entertaining guide to interpreting and drawing insights from any chart, graph, or other data visualization you’ll encounter. You’re a business professional, not a data scientist. How do you make heads or tails of the data visualizations that come across your desk—let alone make critical business decisions based on the information they’re designed to convey? In The Big Picture, top data visualization consultant Steve Wexler provides the tools for developing the graphical literacy you need to understand the data visualizations that are flooding your inbox—and put that data to use. Packed with the best four-color examples created in Excel, Tableau, Power BI, and Qlik, among others, this one-stop resource empowers you to extract the most important information from data visualizations quickly and accurately, act on key insights, solve problems, and make the right decisions for your organization every time.

Think Bayes, 2nd Edition

If you know how to program, you're ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical formulas, using discrete probability distributions rather than continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer and you'll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but there aren't many resources available to help beginners. Based on undergraduate classes taught by author Allen B. Downey, this book's computational approach helps you get a solid start. Use your programming skills to learn and understand Bayesian statistics Work with problems involving estimation, prediction, decision analysis, evidence, and Bayesian hypothesis testing Get started with simple examples, using coins, dice, and a bowl of cookies Learn computational methods for solving real-world problems