talk-data.com talk-data.com

Topic

data

5765

tagged

Activity Trend

3 peak/qtr
2020-Q1 2026-Q1

Activities

5765 activities · Newest first

Deploying SAP Software in Red Hat OpenShift on IBM Power Systems

This IBM® Redpaper publication documents how to containerize and deploy SAP software into Red Hat OpenShift 4 Kubernetes clusters on IBM Power Systems by using predefined Red Hat Ansible scripts, different configurations, and theoretical knowledge, and it documents the findings through sample scenarios. This paper documents the following topics: Running SAP S/4HANA, SAP HANA, and SAP NetWeaver on-premises software in containers that are deployed in Red Hat OpenShift 4 on IBM Power Systems hardware. Existing SAP systems running on IBM Power Systems can be repackaged at customer sites into containers that use predefined Red Hat Ansible scripts. These containers can be deployed multiple times into Red Hat OpenShift 4 Kubernetes clusters on IBM Power Systems. The target audiences for this paper are Chief Information Officers (CIOs) that are interested in containerized solutions of SAP Enterprise Resource Planning (ERP) systems, developers that need containerized environments, and system administrators that provide and manage the infrastructure with underpinning automation. This paper complements the documentation that is available at IBM Knowledge Center, and it aligns with the educational materials that are provided by IBM Garage™ for Systems Education.

IBM DS8900F Architecture and Implementation Release 9.1

This IBM Redbooks publication describes the concepts, architecture, and implementation of the IBM DS8900F family. The book provides reference information to assist readers who need to plan for, install, and configure the DS8900F systems. This edition applies to DS8900F systems with IBM DS8000® Licensed Machine Code (LMC) 7.9.10 (bundle version 89.10.xx.x), referred to as Release 9.1. The DS8900F family offers two classes: IBM DS8910F: Flexibility Class all-flash: The Flexibility Class is designed to reduce complexity while addressing various workloads at the lowest DS8900F family entry cost. IBM DS8950F: Agility Class all-flash: The Agility Class is designed to consolidate all your mission-critical workloads for IBM Z®, IBM LinuxONE, IBM Power Systems, and distributed environments under a single all-flash storage solution. The DS8900F architecture relies on powerful IBM POWER9™ processor-based servers that manage the cache to streamline disk input/output (I/O), which maximizes performance and throughput. These capabilities are further enhanced by High-Performance Flash Enclosures (HPFE) Gen2. Like its predecessors, the DS8900F supports advanced disaster recovery (DR) solutions, business continuity solutions, and thin provisioning. The IBM DS8910F Rack-Mounted model 993 is described in a separate publication: IBM DS8910F Model 993 Rack-Mounted Storage System Release 9.1, REDP-5566.

IBM Power Systems for SAS Viya 3.5 Deployment Guide

This IBM® Redbooks® publication provides options and best practices for deploying SAS Viya 3.5 on IBM POWER9™ servers. SAS Viya is a complex set of artificial intelligence (AI) and analytics solutions that require a properly planned infrastructure to meet the needs of the data scientists, business analysts, and application developers who use Viya capabilities in their daily work activities. Regardless of the user role, the underlying infrastructure matters to ensure performance expectations and service level agreement (SLA) requirements are met or exceeded. Although the general planning process is similar for deploying SAS Viya on any platform, key IBM POWER9 differentiators must be considered to ensure that an optimized infrastructure deployment is achieved. This guide provides useful information that is needed during the planning, sizing, ordering, installing, configuring, and tuning phases of your SAS Viya deployment on POWER9 processor-based servers. This book addresses topics for IT architects, IT specialists, developers, sellers, and anyone who wants to implement SAS Viya 3.5 on IBM POWER9 servers. Moreover, this publication provides documentation to transfer the how-to-skills to the technical teams, and solution guidance to the sales team. This book compliments the documentation that is available in IBM Knowledge Center and aligns with the educational materials that are provided by the IBM Systems Software Education (SSE).

PostgreSQL Query Optimization: The Ultimate Guide to Building Efficient Queries

Write optimized queries. This book helps you write queries that perform fast and deliver results on time. You will learn that query optimization is not a dark art practiced by a small, secretive cabal of sorcerers. Any motivated professional can learn to write efficient queries from the get-go and capably optimize existing queries. You will learn to look at the process of writing a query from the database engine’s point of view, and know how to think like the database optimizer. The book begins with a discussion of what a performant system is and progresses to measuring performance and setting performance goals. It introduces different classes of queries and optimization techniques suitable to each, such as the use of indexes and specific join algorithms. You will learn to read and understand query execution plans along with techniques for influencing those plans for better performance. The book also covers advanced topics such as the use of functions and procedures, dynamic SQL, and generated queries. All of these techniques are then used together to produce performant applications, avoiding the pitfalls of object-relational mappers. What You Will Learn Identify optimization goals in OLTP and OLAP systems Read and understand PostgreSQL execution plans Distinguish between short queries and long queries Choose the right optimization technique for each query type Identify indexes that will improve query performance Optimize full table scans Avoid the pitfalls of object-relational mapping systems Optimize the entire application rather than just database queries Who This Book Is For IT professionals working in PostgreSQL who want to develop performant and scalable applications, anyone whosejob title contains the words “database developer” or “database administrator" or who is a backend developer charged with programming database calls, and system architects involved in the overall design of application systems running against a PostgreSQL database

Bootstrapping

Bootstrapping is a conceptually simple statistical technique to increase the quality of estimates, conduct robustness checks and compute standard errors for virtually any statistic. This book provides an intelligible and compact introduction for students, scientists and practitioners. It not only gives a clear explanation of the underlying concepts but also demonstrates the application of bootstrapping using Python and Stata.

Advancing into Analytics

Data analytics may seem daunting, but if you're an experienced Excel user, you have a unique head start. With this hands-on guide, intermediate Excel users will gain a solid understanding of analytics and the data stack. By the time you complete this book, you'll be able to conduct exploratory data analysis and hypothesis testing using a programming language. Exploring and testing relationships are core to analytics. By using the tools and frameworks in this book, you'll be well positioned to continue learning more advanced data analysis techniques. Author George Mount, founder and CEO of Stringfest Analytics, demonstrates key statistical concepts with spreadsheets, then pivots your existing knowledge about data manipulation into R and Python programming. This practical book guides you through: Foundations of analytics in Excel: Use Excel to test relationships between variables and build compelling demonstrations of important concepts in statistics and analytics From Excel to R: Cleanly transfer what you've learned about working with data from Excel to R From Excel to Python: Learn how to pivot your Excel data chops into Python and conduct a complete data analysis

SAP SuccessFactors Talent: Volume 1: A Complete Guide to Configuration, Administration, and Best Practices: Performance and Goals

Take an in-depth look at SAP SuccessFactors talent modules with this complete guide to configuration, administration, and best practices. This two-volume series follows a logical progression of SAP SuccessFactors modules that should be configured to complete a comprehensive talent management solution. The authors walk you through fully functional simple implementations in the primary chapters for each module before diving into advanced topics in subsequent chapters. In volume 1, we start with a brief introduction. The next two chapters jump into the Talent Profile and Job Profile Builder. These chapters lay the structures and data that will be utilized across the remaining chapters which detail each module. The following eight chapters walk you through building, administering, and using a goal plan in the Goal Management module as well as performance forms in the Performance Management module. The book also expands on performance topics with the 360form and continuous performance management in two additional chapters. We then dive into configuring the calibration tool and how to set up calibration sessions in the next two chapters before providing a brief conclusion. Within each topic, the book touches on the integration points with other modules as well as internationalization. The authors also provide recommendations and insights from real world experience. Having finished the book, you will have an understanding of what comprises a complete SAP SuccessFactors talent management solution and how to configure, administer, and use each module within it. You will: · Develop custom talent profile portlets · Integrate Job Profile Builder with SAP SuccessFactors talent modules · Set up security, group goals, and team goals in goals management with sample XML · Configure and launch performance forms including rating scales and route maps · Configure and administrate the calibration module and its best practices

Trino: The Definitive Guide

Perform fast interactive analytics against different data sources using the Trino high-performance distributed SQL query engine. With this practical guide, you'll learn how to conduct analytics on data where it lives, whether it's Hive, Cassandra, a relational database, or a proprietary data store. Analysts, software engineers, and production engineers will learn how to manage, use, and even develop with Trino. Initially developed by Facebook, open source Trino is now used by Amazon, Google, LinkedIn, Lyft, Netflix, Pinterest, Salesforce, Shopify, and many other companies. Matt Fuller, Manfred Moser, and Martin Traverso show you how a single Trino query can combine data from multiple sources to allow for analytics across your entire organization. Get started: Explore Trino's use cases and learn about tools that will help you connect to Trino and query data Go deeper: Learn Trino's internal workings, including how to connect to and query data sources with support for SQL statements, operators, functions, and more Put Trino in production: Secure Trino, monitor workloads, tune queries, and connect more applications; learn how other organizations apply Trino

IBM FlashSystem 7200 Product Guide

This IBM® Redbooks® Product Guide publication describes the IBM FlashSystem® 7200 solution, which is a comprehensive, all-flash, and NVMe-enabled enterprise storage solution that delivers the full capabilities of IBM FlashCore® technology. In addition, it provides a rich set of software-defined storage (SDS) features, including data reduction and de-duplication, dynamic tiering, thin-provisioning, snapshots, cloning, replication, data copy services, and IBM HyperSwap® for high availability (HA). Scale-out and scale-up configurations further enhance capacity and throughput for better availability

IBM FlashSystem 9200 Product Guide

This IBM® Redbooks® Product Guide publication describes the IBM FlashSystem® 9200 solution, which is a comprehensive, all-flash, and NVMe-enabled enterprise storage solution that delivers the full capabilities of IBM FlashCore® technology. In addition, it provides a rich set of software-defined storage (SDS) features, including data reduction and de-duplication, dynamic tiering, thin-provisioning, snapshots, cloning, replication, data copy services, and IBM HyperSwap® for high availability (HA). Scale-out and scale-up configurations further enhance capacity and throughput for better availability.

Hands-On Data Visualization

Tell your story and show it with data, using free and easy-to-learn tools on the web. This introductory book teaches you how to design interactive charts and customized maps for your website, beginning with simple drag-and-drop tools such as Google Sheets, Datawrapper, and Tableau Public. You'll also gradually learn how to edit open source code templates like Chart.js, Highcharts, and Leaflet on GitHub. Hands-On Data Visualization takes you step-by-step through tutorials, real-world examples, and online resources. This practical guide is ideal for students, nonprofit organizations, small business owners, local governments, journalists, academics, and anyone who wants to take data out of spreadsheets and turn it into lively interactive stories. No coding experience is required. Build interactive charts and maps and embed them in your website Understand the principles for designing effective charts and maps Learn key data visualization concepts to help you choose the right tools Convert and transform tabular and spatial data to tell your data story Edit and host Chart.js, Highcharts, and Leaflet map code templates on GitHub Learn how to detect bias in charts and maps produced by others

Introducing .NET for Apache Spark: Distributed Processing for Massive Datasets

Get started using Apache Spark via C# or F# and the .NET for Apache Spark bindings. This book is an introduction to both Apache Spark and the .NET bindings. Readers new to Apache Spark will get up to speed quickly using Spark for data processing tasks performed against large and very large datasets. You will learn how to combine your knowledge of .NET with Apache Spark to bring massive computing power to bear by distributed processing of extremely large datasets across multiple servers. This book covers how to get a local instance of Apache Spark running on your developer machine and shows you how to create your first .NET program that uses the Microsoft .NET bindings for Apache Spark. Techniques shown in the book allow you to use Apache Spark to distribute your data processing tasks over multiple compute nodes. You will learn to process data using both batch mode and streaming mode so you can make the right choice depending on whether you are processing an existing dataset or are working against new records in micro-batches as they arrive. The goal of the book is leave you comfortable in bringing the power of Apache Spark to your favorite .NET language. What You Will Learn Install and configure Spark .NET on Windows, Linux, and macOS Write Apache Spark programs in C# and F# using the .NET bindings Access and invoke the Apache Spark APIs from .NET with the same high performance as Python, Scala, and R Encapsulate functionality in user-defined functions Transform and aggregate large datasets Execute SQL queries against files through Apache Hive Distribute processing of large datasets across multiple servers Create your own batch, streaming, and machine learning programs Who This Book Is For .NETdevelopers who want to perform big data processing without having to migrate to Python, Scala, or R; and Apache Spark developers who want to run natively on .NET and take advantage of the C# and F# ecosystems

Data Science on AWS

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level up your skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

Azure Data Engineering Cookbook

Dive into the world of data engineering with 'Azure Data Engineering Cookbook' to master building efficient ETL workflows using Microsoft Azure Data services. Whether you're working on batch processing solutions or real-time analytics, this book is your guide to implementing effective, scalable data operations. What this Book will help me do Design and implement efficient ETL pipelines for batch and real-time processing on MS Azure. Understand the use of Azure Blob storage for managing large data sets. Ingest, process, and analyze data using tools like Azure Synapse and Databricks. Develop and secure automation pipelines using Azure Data Factory. Leverage Azure Stream Analytics for real-time data processing workflows. Author(s) Ahmad Osama and Nagaraj Venkatesan bring years of expertise in cloud solutions and data engineering. Renowned for their practical teaching approach, they have helped countless professionals master the intricacies of Azure. Their focus is on equipping readers with actionable skills for real-world data challenges. Who is it for? This book is ideal for data engineers and database professionals aiming to hone their expertise in advanced Azure data engineering tasks. Readers should have a working knowledge of Azure fundamentals and basic data engineering concepts. If you're a technical architect or ETL developer seeking to transition or enhance your skills in Azure's ecosystem, you'll find immense value here.

R2DBC Revealed: Reactive Relational Database Connectivity for Java and JVM Programmers

Understand the newest trend in database programming for developers working in Java, Kotlin, Clojure, and other JVM-based languages. This book introduces Reactive Relational Database Connectivity (R2DBC), a modern way of connecting to and querying relational databases from Java and other JVM languages. The book begins by helping you understand not only what reactive programming is, but why it is necessary. Then building on those fundamentals, the book takes you into the world of databases and the newly released Reactive Relational Database Connectivity (R2DBC) specification. Examples in the book are worked using the freely available MariaDB database along with MariaDB’s vendor-implementation of the R2DBC service-provider interface (SPI). Following along with the examples and the provided example code helps prepare you to work with any of the growing number of R2DBC implementations for popular enterprise databases such as Oracle Database and SQL Server. You’ll be well prepared for what is becoming the future of database access from Java and other languages built on the JVM. What You Will Learn Understand why R2DBC was created and how it utilizes the Reactive Streams API Understand the components of the R2DBC service-provider interface Create and manage reactive database connections and connection pools using an R2DBC client Programmatically execute queries on a relational database using an R2DBC client Effectively utilize transactions using an R2DBC client Build relational database-driven applications that are event-driven and non-blocking Who This Book Is For Software developers building solutions using JVM languages and the JVM ecosystem, and developers who need an introduction to the R2DBC specification and reactive programming with relational databases and want to understand what Reactive Relational Database Connectivity is and why it came about. This book includes practical examples of using the R2DBC specification with Java and MariaDB that will provide developers with the knowledge they need to create their own solutions.

Visualizing Data in R 4: Graphics Using the base, graphics, stats, and ggplot2 Packages

Master the syntax for working with R’s plotting functions in graphics and stats in this easy reference to formatting plots. The approach in Visualizing Data in R 4 toward the application of formatting in ggplot() will follow the structure of the formatting used by the plotting functions in graphics and stats. This book will take advantage of the new features added to R 4 where appropriate including a refreshed color palette for charts, Cairo graphics with more fonts/symbols, and improved performance from grid graphics including ggplot 2 rendering speed. Visualizing Data in R 4 starts with an introduction and then is split into two parts and six appendices. Part I covers the function plot() and the ancillary functions you can use with plot(). You’ll also see the functions par() and layout(), providing for multiple plots on a page. Part II goes over the basics of using the functions qplot() and ggplot() in the package ggplot2. The default plots generated by the functions qplot() and ggplot() give more sophisticated-looking plots than the default plots done by plot() and are easier to use, but the function plot() is more flexible. Both plot() and ggplot() allow for many layers to a plot. The six appendices will cover plots for contingency tables, plots for continuous variables, plots for data with a limited number of values, functions that generate multiple plots, plots for time series analysis, and some miscellaneous plots. Some of the functions that will be in the appendices include functions that generate histograms, bar charts, pie charts, box plots, and heatmaps. What You Will Learn Use R to create informative graphics Master plot(), qplot(), and ggplot() Discover the canned graphics functions in stats and graphics Format plots generated by plot() and ggplot() Who This Book Is For Those in data science who use R. Some prior experience with R or data science is recommended.

Automated Unit Testing with ABAP: A Practical Approach

Write automated unit tests for the ABAP language. This book teaches programmers using simple examples and metaphors and explains the underlying concepts of writing effective automated unit tests. Many, if not most, ABAP programmers learned their programming and testing skills before the ABAP development environment provided an automated unit testing facility. Automated Unit Testing with ABAP: A Practical Approach offers hope and salvation to ABAP programmers who continue to toil with antiquated manual unit testing processes, taking them by the hand and lifting them out of that dungeon of despair with a modern and proven alternative. It begins by explaining how the xUnit family of automated testing frameworks provides a quick and effective means of insuring high-quality software. It then focuses on the ABAP Unit Testing Facility, the xUnit framework applicable specifically to the ABAP language, showing how it can be used to bring ABAP applications underautomated testing control, from old legacy applications to those newly written. Whereas xUnit testing has been widely accepted with developers writing in many other programming languages, it is an unfortunate fact in the ABAP community that many programmers still are unfamiliar with xUnit concepts and do not know how to begin implementing automated unit testing into their development process. This book demonstrates how to refactor programs so they become designed for testability, showing how to use process encapsulation and test isolation to facilitate automated testing, including a thorough explanation of test-driven development and the use of test doubles. The book: Shows how to write automated unit tests for ABAP Instills ABAP programmers with the confidence to refactor poorly written code Explains how an automated testing harness facilitates rapid software development Teaches how to utilize test-driven development (TDD) withABAP Offers advice and tips on the best ways to write automated unit tests What You Will Learn Become familiar with the xUnit approach to testing Know the ABAP statements that interfere with running automated unit tests and how to accommodate them Understand what it means to isolate code for testing and how this is achieved Gain the confidence to refactor poorly written code Make ABAP programs designed for testability Reap the benefits of spending less time manually unit testing ABAP programs Use test-driven development (TDD) with ABAP programming Use configurable test doubles in ABAP Who This Book Is For ABAP programmers who remain unfamiliar with the automated unit testing facility and those who already use it butwant to improve their skill writing and using automated tests. The book addresses the reluctance and trepidation felt by procedural ABAP programmers who need to know some object-oriented concepts to use this facility, expands their horizons, and helps them step through the doorway leading to a different approach to program design.