We the Data Engineering Team here at WB Games implemented an internal Redshift Loader DAG(s) on Airflow that allow us to ingest data in near real-time at scale into Redshift, taking into account variable load on the DB and been able to quickly catch up data loads in case of various DB outages or high usage scenarios. Highlights: Handle any type of Redshift outages and system delays dynamically between multiple sources(S3) to sinks(Redshift). Auto tuning data copies for faster data backfill in case of delay without overwhelming commit queue. Supports schema evolution on Game data dynamically. Maintain data quality to ensure we do not create data gaps or dupes. Provide embedded custom metrics for deeper insights and anomaly detection. Airflow config based Declarative Dag implementation.
talk-data.com
Topic
Redshift
Amazon Redshift
119
tagged
Activity Trend
Top Events
Summary Building a data platform is an iterative and evolutionary process that requires collaboration with internal stakeholders to ensure that their needs are being met. Yotpo has been on a journey to evolve and scale their data platform to continue serving the needs of their organization as it increases the scale and sophistication of data usage. In this episode Doron Porat and Liran Yogev explain how they arrived at their current architecture, the capabilities that they are optimizing for, and the complex process of identifying and evaluating new components to integrate into their systems. This is an excellent exploration of the decisions and tradeoffs that need to be made while building such a complex system.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! This episode is brought to you by Acryl Data, the company behind DataHub, the leading developer-friendly data catalog for the modern data stack. Open Source DataHub is running in production at several companies like Peloton, Optum, Udemy, Zynga and others. Acryl Data provides DataHub as an easy to consume SaaS product which has been adopted by several companies. Signup for the SaaS product at dataengineeringpodcast.com/acryl RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their state-of-the-art reverse ETL pipelines enable you to send enriched data to any cloud tool. Sign up free… or just get the free t-shirt for being a listener of the Data Engineering Podcast at dataengineeringpodcast.com/rudder. The most important piece of any data project is the data itself, which is why it is critical that your data source is high quality. PostHog is your all-in-one product analytics suite including product analysis, user funnels, feature flags, experimentation, and it’s open source so you can host it yourself or let them do it for you! You have full control over your data and their plugin system lets you integrate with all of your other data tools, including data warehouses and SaaS platforms. Give it a try today with their generous free tier at dataengineeringpodcast.com/posthog Your host is Tobias Macey and today I’m interviewing Doron Porat and Liran Yogev about their experiences designing and implementing a self-serve data platform at Yotpo
Interview
Introduction How did you get involved in the area of data management? Can you describe what Yotpo is and the role that data plays in the organization? What are the core data types and sources that you are working with?
What kinds of data assets are being produced and how do those get consumed and re-integrated into the business?
What are the user personas that you are supporting and what are the interfaces that they are comfortable interacting with?
What is the size of your team and how is it structured?
You recently posted about the current architecture of your data platform. What was the starting point on your platform journey?
What did the early stages of feature and platform evolution look like? What was the catalyst for making a concerted effort to integrate your systems into a cohesive platform?
What was the scope and directive of the project for building a platform?
What are the metrics and capabilities that you are optimizing for in the structure of your data platform? What are the organizational or regulatory constraints that you needed to account for?
What are some of the early decisions that affected your available choices in later stages of the project? What does the current state of your architecture look like?
How long did it take to get to where you are today?
What were the factors that you considered in the various build vs. buy decisions?
How did you manage cost modeling to understand the true savings on either side of that decision?
If you were to start from scratch on a new data platform today what might you do differently? What are the decisions that proved helpful in the later stages of your platform development? What are the most interesting, innovative, or unexpected ways that you have seen your platform used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on designing and implementing your platform? What do you have planned for the future of your platform infrastructure?
Contact Info
Doron
Liran
Parting Question
From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
Thank you for listening! Don’t forget to check out our other show, Podcast.init to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers
Links
Yotpo
Data Platform Architecture Blog Post
Greenplum Databricks Metorikku Apache Hive CDC == Change Data Capture Debezium
Podcast Episode
Apache Hudi
Podcast Episode
Upsolver
Podcast Episode
Spark PrestoDB Snowflake
Podcast Episode
Druid Rockset
Podcast Episode
dbt
Podcast Episode
Acryl
Podcast Episode
Atlan
Podcast Episode
OpenLineage
Podcast Episode
Okera Shopify Data Warehouse Episode Redshift Delta Lake
Podcast Episode
Iceberg
Podcast Episode
Outbox Pattern Backstage Roadie Nomad Kubernetes Deequ Great Expectations
Podcast Episode
LakeFS
Podcast Episode
2021 Recap Episode Monte Carlo
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
a…
Summary Building a data platform is a complex journey that requires a significant amount of planning to do well. It requires knowledge of the available technologies, the requirements of the operating environment, and the expectations of the stakeholders. In this episode Tobias Macey, the host of the show, reflects on his plans for building a data platform and what he has learned from running the podcast that is influencing his choices.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription TimescaleDB, from your friends at Timescale, is the leading open-source relational database with support for time-series data. Time-series data is time stamped so you can measure how a system is changing. Time-series data is relentless and requires a database like TimescaleDB with speed and petabyte-scale. Understand the past, monitor the present, and predict the future. That’s Timescale. Visit them today at dataengineeringpodcast.com/timescale RudderStack helps you build a customer data platform on your warehouse or data lake. Instead of trapping data in a black box, they enable you to easily collect customer data from the entire stack and build an identity graph on your warehouse, giving you full visibility and control. Their SDKs make event streaming from any app or website easy, and their state-of-the-art reverse ETL pipelines enable you to send enriched data to any cloud tool. Sign up free… or just get the free t-shirt for being a listener of the Data Engineering Podcast at dataengineeringpodcast.com/rudder. I’m your host, Tobias Macey, and today I’m sharing the approach that I’m taking while designing a data platform
Interview
Introduction How did you get involved in the area of data management? What are the components that need to be considered when designing a solution?
Data integration (extract and load)
What are your data sources? Batch or streaming (acceptable latencies)
Data storage (lake or warehouse)
How is the data going to be used? What other tools/systems will need to integrate with it? The warehouse (Bigquery, Snowflake, Redshift) has become the focal point of the "modern data stack"
Data orchestration
Who will be managing the workflow logic?
Metadata repository
Types of metadata (catalog, lineage, access, queries, etc.)
Semantic layer/reporting Data applications
Implementation phases
Build a single end-to-end workflow of a data application using a single category of data across sources Validate the ability for an analyst/data scientist to self-serve a notebook powered analysis Iterate
Risks/unknowns
Data modeling requirements Specific implementation details as integrations acros
Summary The life sciences as an industry has seen incredible growth in scale and sophistication, along with the advances in data technology that make it possible to analyze massive amounts of genomic information. In this episode Guy Yachdav, director of software engineering for ImmunAI, shares the complexities that are inherent to managing data workflows for bioinformatics. He also explains how he has architected the systems that ingest, process, and distribute the data that he is responsible for and the requirements that are introduced when collaborating with researchers, domain experts, and machine learning developers.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. Your host is Tobias Macey and today I’m interviewing Guy Yachdav, Director of Software Engineering at Immunai, about his work at Immunai to wrangle biological data for advancing research into the human immune system.
Interview
Introduction (see Guy’s bio below) How did you get involved in the area of data management? Can you describe what Immunai is and the story behind it? What are some of the categories of information that you are working with?
What kinds of insights are you trying to power/questions that you are trying to answer with that data?
Who are the stakeholders that you are working with and how does that influence your approach to the integration/transformation/presentation of the data? What are some of the challenges unique to the biological data domain that you have had to address?
What are some of the limitations in the off-the-shelf tools when applied to biological data? How have you approached the selection of tools/techniques/technologies to make your work maintainable for your engineers and accessible for your end users?
Can
Discover how to effectively build and manage data engineering pipelines using AWS with "Data Engineering with AWS". In this hands-on book, you'll explore the foundational principles of data engineering, learn to architect data pipelines, and work with essential AWS services to process, transform, and analyze data. What this Book will help me do Understand and implement modern data engineering pipelines with AWS services. Gain proficiency in automating data ingestion and transformation using Amazon tools. Perform efficient data queries and analysis leveraging Amazon Athena and Redshift. Create insightful data visualizations using Amazon QuickSight. Apply machine learning techniques to enhance data engineering processes. Author(s) None Eagar, a Senior Data Architect with over twenty-five years of experience, specializes in modern data architectures and cloud solutions. With a rich background in applying data engineering to real-world problems, None Eagar shares expertise in a clear and approachable way for readers. Who is it for? This book is perfect for data engineers and data architects aiming to grow their expertise in AWS-based solutions. It's also geared towards beginners in data engineering wanting to adopt the best practices. Those with a basic understanding of big data and cloud platforms will find it particularly valuable, but prior AWS experience is not required.
Summary Gartner analysts are tasked with identifying promising companies each year that are making an impact in their respective categories. For businesses that are working in the data management and analytics space they recognized the efforts of Timbr.ai, Soda Data, Nexla, and Tada. In this episode the founders and leaders of each of these organizations share their perspective on the current state of the market, and the challenges facing businesses and data professionals today.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Have you ever had to develop ad-hoc solutions for security, privacy, and compliance requirements? Are you spending too much of your engineering resources on creating database views, configuring database permissions, and manually granting and revoking access to sensitive data? Satori has built the first DataSecOps Platform that streamlines data access and security. Satori’s DataSecOps automates data access controls, permissions, and masking for all major data platforms such as Snowflake, Redshift and SQL Server and even delegates data access management to business users, helping you move your organization from default data access to need-to-know access. Go to dataengineeringpodcast.com/satori today and get a $5K credit for your next Satori subscription. Your host is Tobias Macey and today I’m interviewing Saket Saurabh, Maarten Masschelein, Akshay Deshpande, and Dan Weitzner about the challenges facing data practitioners today and the solutions that are being brought to market for addressing them, as well as the work they are doing that got them recognized as "cool vendors" by Gartner.
Interview
Introduction How did you get involved in the area of data management? Can you each describe what you view as the biggest challenge facing data professionals? Who are you building your solutions for and what are the most common data management problems are you all solving? What are different components of Data Management and why is it so complex? What will simplify this process, if any? The report covers a lot of new data management terminology – data governance, data observability, data fabric, data mesh, DataOps, MLOps, AIOps – what does this all mean and why is it important for data engineers? How has the data management space changed in recent times? Describe the current data management landscape and any key developments. From your perspective, what are the biggest challenges in the data management space today? What modern data management features are lacking in existing databases? Gartner imagines a future where data and analytics leaders need to be prepared to rely on data manage
Summary The reason that so much time and energy is spent on data integration is because of how our applications are designed. By making the software be the owner of the data that it generates, we have to go through the trouble of extracting the information to then be used elsewhere. The team at Cinchy are working to bring about a new paradigm of software architecture that puts the data as the central element. In this episode Dan DeMers, Cinchy’s CEO, explains how their concept of a "Dataware" platform eliminates the need for costly and error prone integration processes and the benefits that it can provide for transactional and analytical application design. This is a fascinating and unconventional approach to working with data, so definitely give this a listen to expand your thinking about how to build your systems.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Have you ever had to develop ad-hoc solutions for security, privacy, and compliance requirements? Are you spending too much of your engineering resources on creating database views, configuring database permissions, and manually granting and revoking access to sensitive data? Satori has built the first DataSecOps Platform that streamlines data access and security. Satori’s DataSecOps automates data access controls, permissions, and masking for all major data platforms such as Snowflake, Redshift and SQL Server and even delegates data access management to business users, helping you move your organization from default data access to need-to-know access. Go to dataengineeringpodcast.com/satori today and get a $5K credit for your next Satori subscription. Your host is Tobias Macey and today I’m interviewing Dan DeMers about Cinchy, a dataware platform aiming to simplify the work of data integration by eliminating ETL/ELT
Interview
Introduction How did you get involved in the area of data management? Can you describe what Cinchy is and the story behind it? In your experience working in data and building complex enterprise-grade systems, what are the shortcomings and negative externalities of an ETL/ELT approach to data integration? How is a Dataware platform from a data lake or data warehouses? What is it used for? What is Zero-Copy Integration? How does that work? Can you describe how customers start their Cinchy journey? What are the main use case patterns that you’re seeing with Dataware? Your platform offers unlimited users, including business users. What are some of the challenges that you face in building a user experience that doesn’t become overwhelming as an organization scales the number of data sources and processing flows? Wh
Summary Data lakes have been gaining popularity alongside an increase in their sophistication and usability. Despite improvements in performance and data architecture they still require significant knowledge and experience to deploy and manage. In this episode Vikrant Dubey discusses his work on the Cuelake project which allows data analysts to build a lakehouse with SQL queries. By building on top of Zeppelin, Spark, and Iceberg he and his team at Cuebook have built an autoscaled cloud native system that abstracts the underlying complexity.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Have you ever had to develop ad-hoc solutions for security, privacy, and compliance requirements? Are you spending too much of your engineering resources on creating database views, configuring database permissions, and manually granting and revoking access to sensitive data? Satori has built the first DataSecOps Platform that streamlines data access and security. Satori’s DataSecOps automates data access controls, permissions, and masking for all major data platforms such as Snowflake, Redshift and SQL Server and even delegates data access management to business users, helping you move your organization from default data access to need-to-know access. Go to dataengineeringpodcast.com/satori today and get a $5K credit for your next Satori subscription. Your host is Tobias Macey and today I’m interviewing Vikrant Dubey about Cuebook and their Cuelake project for building ELT pipelines for your data lakehouse entirely in SQL
Interview
Introduction How did you get involved in the area of data management? Can you describe what Cuelake is and the story behind it? There are a number of platforms and projects for running SQL workloads and transformations on a data lake. What was lacking in those systems that you are addressing with Cuelake? Who are the target users of Cuelake and how has that influenced the features and design of the system? Can you describe how Cuelake is implemented?
What was your selection process for the various components?
What are some of the sharp edges that you have had to work around when integrating these components? What involved in getting Cuelake deployed? How are you using Cuelake in your work at Cuebook? Given your focus on machine learning for anomaly detection of business metrics, what are the challenges that you faced in using a data warehouse for those workloads?
What are the advantages that a data lake/lakehouse architecture maintains over a warehouse? What are the shortcomings of the lake/lakehouse approach that are solved by using a warehouse?
What are the most interesting, in
Summary The vast majority of data tools and platforms that you hear about are designed for working with structured, text-based data. What do you do when you need to manage unstructured information, or build a computer vision model? Activeloop was created for exactly that purpose. In this episode Davit Buniatyan, founder and CEO of Activeloop, explains why he is spending his time and energy on building a platform to simplify the work of getting your unstructured data ready for machine learning. He discusses the inefficiencies that teams run into from having to reprocess data multiple times, his work on the open source Hub library to solve this problem for everyone, and his thoughts on the vast potential that exists for using computer vision to solve hard and meaningful problems.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Have you ever had to develop ad-hoc solutions for security, privacy, and compliance requirements? Are you spending too much of your engineering resources on creating database views, configuring database permissions, and manually granting and revoking access to sensitive data? Satori has built the first DataSecOps Platform that streamlines data access and security. Satori’s DataSecOps automates data access controls, permissions, and masking for all major data platforms such as Snowflake, Redshift and SQL Server and even delegates data access management to business users, helping you move your organization from default data access to need-to-know access. Go to dataengineeringpodcast.com/satori today and get a $5K credit for your next Satori subscription. Your host is Tobias Macey and today I’m interviewing Davit Buniatyan about Activeloop, a platform for hosting and delivering datasets optimized for machine learning
Interview
Introduction How did you get involved in the area of data management? Can you describe what Activeloop is and the story behind it? How does the form and function of data storage introduce friction in the development and deployment of machine learning projects? How does the work that you are doing at Activeloop compare to vector databases such as Pinecone? You have a focus on image oriented data and computer vision projects. How does the specific applications of ML/DL influence the format and interactions with the data? Can you describe how the Activeloop platform is architected?
How have the design and goals of the system changed or evolved since you began working on it?
What are the feature and performance tradeoffs between self-managed storage locations (e.g. S3, GCS) and the Activeloop platform? What is the process for sourcing, processing, and storing
Summary All of the fancy data platform tools and shiny dashboards that you use are pointless if the consumers of your analysis don’t have trust in the answers. Stemma helps you establish and maintain that trust by giving visibility into who is using what data, annotating the reports with useful context, and understanding who is responsible for keeping it up to date. In this episode Mark Grover explains what he is building at Stemma, how it expands on the success of the Amundsen project, and why trust is the most important asset for data teams.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Mark Grover about his work at Stemma to bring the Amundsen project to a wider audience and increase trust in their data.
Interview
Introduction Can you describe what Stemma is and the story behind it? Can you give me more context into how and why Stemma fits into the current data engineering world? Among the popular tools of today for data warehousing and other products that stitch data together – what is Stemma’s place? Where does it fit into the workflow? How has the explosion in options for data cataloging and discovery influenced your thinking on the necessary feature set for that class of tools? How do you compare to your competitors With how long we have been using data and building systems to analyze it, why do you think that trust in the results is still such a momentous problem? Tell me more about Stemma and how it compares to Amundsen? Can you tell me more about the impact of Stemma/Amundsen to companies that use it? What are the opportunities for innovating on top of Stemma to help organizations streamline communication between data producers and consumers? Beyond the technological capabilities of a data platform, the bigger question is usually the social/organizational patterns around data. How have the "best practices" around the people side of data changed in the recent past?
What are the points of friction that
Summary Every organization needs to be able to use data to answer questions about their business. The trouble is that the data is usually spread across a wide and shifting array of systems, from databases to dashboards. The other challenge is that even if you do find the information you are seeking, there might not be enough context available to determine how to use it or what it means. Castor is building a data discovery platform aimed at solving this problem, allowing you to search for and document details about everything from a database column to a business intelligence dashboard. In this episode CTO Amaury Dumoulin shares his perspective on the complexity of letting everyone in the company find answers to their questions and how Castor is designed to help.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Have you ever had to develop ad-hoc solutions for security, privacy, and compliance requirements? Are you spending too much of your engineering resources on creating database views, configuring database permissions, and manually granting and revoking access to sensitive data? Satori has built the first DataSecOps Platform that streamlines data access and security. Satori’s DataSecOps automates data access controls, permissions, and masking for all major data platforms such as Snowflake, Redshift and SQL Server and even delegates data access management to business users, helping you move your organization from default data access to need-to-know access. Go to dataengineeringpodcast.com/satori today and get a $5K credit for your next Satori subscription. Your host is Tobias Macey and today I’m interviewing Amaury Dumoulin about Castor, a managed platform for easy data cataloging and discovery
Interview
Introduction How did you get involved in the area of data management? Can you describe what Castor is and the story behind it? The market for data catalogues is nascent but growing fast. What are the broad categories for the different products and projects in the space? What do you see as the core features that are required to be competitive?
In what ways has that changed in
Summary Data lake architectures have largely been biased toward batch processing workflows due to the volume of data that they are designed for. With more real-time requirements and the increasing use of streaming data there has been a struggle to merge fast, incremental updates with large, historical analysis. Vinoth Chandar helped to create the Hudi project while at Uber to address this challenge. By adding support for small, incremental inserts into large table structures, and building support for arbitrary update and delete operations the Hudi project brings the best of both worlds together. In this episode Vinoth shares the history of the project, how its architecture allows for building more frequently updated analytical queries, and the work being done to add a more polished experience to the data lake paradigm.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Vinoth Chandar about Apache Hudi, a data lake management layer for supporting fast and incremental updates to your tables.
Interview
Introduction How did you get involved in the area of data management? Can you describe what Hudi is and the story behind it? What are the use cases that it is focused on supporting? There have been a number of alternative table formats introduced for data lakes recently. How does Hudi compare to projects like Iceberg, Delta Lake, Hive, etc.? Can you describe how Hudi is architected?
How have the goals and design of Hudi changed or evolved since you first began working on it? If you were to start the whole project over today, what would you do differently?
Can you talk through the lifecycle of a data record as it is ingested, compacted, and queried in a Hudi deployment? One of the capabilities that is interesting to explore is support for arbitrary record deletion. Can you talk through why this is a challenging operation in data lake architectures?
How does Hudi make that a tractable problem?
What are the data platform components that are needed to support an installation of Hudi? What is involved in migrating an existing data lake to use Hudi?
How would someone approach supporting heterogeneous table formats in their lake?
As someone who has invested a lot of time in technologies for supporting data lakes, what are your thoughts on the tradeoffs of data lake vs data warehouse and the current trajectory of the ecosystem? What are the most interesting, innovative, or unexpected ways that you have seen Hudi used? What are the most interesting, unexpected, or challenging lessons that you have learned while working on Hudi? When is Hudi the wrong choice? What do you have planned for the future of Hudi?
Contact Info
Linkedin Twitter
Parting Question
From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
Thank you for listening! Don’t forget to check out our other show, Podcast.init to learn about the Python language, its community, and the innovative ways it is being used. Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes. If you’ve learned something or tried out a project from the show then tell us about it! Email [email protected]) with your story. To help other people find the show please leave a review on iTunes and tell your friends and co-workers Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
Links
Hudi Docs Hudi Design & Architecture Incremental Processing CDC == Change Data Capture
Podcast Episodes
Oracle GoldenGate Voldemort Kafka Hadoop Spark HBase Parquet Iceberg Table Format
Data Engineering Episode
Hive ACID Apache Kudu
Podcast Episode
Vertica Delta Lake
Podcast Episode
Optimistic Concurrency Control MVCC == Multi-Version Concurrency Control Presto Flink
Podcast Episode
Trino
Podcast Episode
Gobblin LakeFS
Podcast Episode
Nessie
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Support Data Engineering Podcast
Summary Everyone expects data to be transmitted, processed, and updated instantly as more and more products integrate streaming data. The technology to make that possible has been around for a number of years, but the barriers to adoption have still been high due to the level of technical understanding and operational capacity that have been required to run at scale. Datastax has recently introduced a new managed offering for Pulsar workloads in the form of Astra Streaming that lowers those barriers and make stremaing workloads accessible to a wider audience. In this episode Prabhat Jha and Jonathan Ellis share the work that they have been doing to integrate streaming data into their managed Cassandra service. They explain how Pulsar is being used by their customers, the work that they have done to scale the administrative workload for multi-tenant environments, and the challenges of operating such a data intensive service at large scale. This is a fascinating conversation with a lot of useful lessons for anyone who wants to understand the operational aspects of Pulsar and the benefits that it can provide to data workloads.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Prabhat Jha and Jonathan Ellis about Astra Streaming, a cloud-native streaming platform built on Apache Pulsar
Interview
Introduction
How did you get involved in the area of data management?
Can you describe what the Astra platform is and the story behind it?
How does streaming fit into your overall product vision and the needs of your customers?
What was your selection process/criteria for adopting a streaming engine to complement your existing technology investment?
What are the core use cases that you are aiming to support with Astra Streaming?
Can you describe the architecture and automation of your hosted platform for Pulsar?
What are the integration points that you have built to make it work well with Cassandra?
What are some of the additional tools that you have added to your distribution of Pulsar to simplify operation and use?
What are some of the sharp edges that you have had to sand down as you have scaled up your usage of Pulsar?
What is the process for someone to adopt and integrate with your Astra Streaming service?
How do you handle migrating existing projects, particularly if they are using Kafka currently?
One of the capabilities that you highlight on the product page for Astra Streaming is the ability to execute machine learning workflows on data in flight. What are some of the supporting systems that are necessary to power that workflow?
What are the capabilities that are built into Pulsar that simplify the operational aspects of streaming ML?
What are the ways that you are engaging with and supporting the Pulsar community?
What are the near to medium term elements of the Pulsar roadmap that you are working toward and excited to incorporate into Astra?
What are the most interesting, innovative, or unexpected ways that you have seen Astra used?
What are the most interesting, unexpected, or challenging lessons that you have learned while working on Astra?
When is Astra the wrong choice?
What do you have planned for the future of Astra?
Contact Info
Prabhat
LinkedIn @prabhatja on Twitter prabhatja on GitHub
Jonathan
LinkedIn @spyced on Twitter
Parting Question
From your perspective, what is the biggest gap in the tooling or technology for data management today?
Links
Pulsar
Podcast Episode Streamnative Episode
Datastax Astra Streaming Datastax Astra DB Luna Streaming Distribution Datastax Cassandra Kesque (formerly Kafkaesque) Kafka RabbitMQ Prometheus Grafana Pulsar Heartbeat Pulsar Summit Pulsar Summit Presentation on Kafka Connectors Replicated Chaos Engineering Fallout chaos engineering tools Jepsen
Podcast Episode
Jack VanLightly
BookKeeper TLA+ Model
Change Data Capture
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Support Data Engineering Podcast
Dive into the world of Amazon Redshift with this comprehensive cookbook, packed with practical recipes to build, optimize, and manage modern data warehousing solutions. From understanding Redshift's architecture to implementing advanced data warehousing techniques, this book provides actionable guidance to harness the power of Amazon Redshift effectively. What this Book will help me do Master the architecture and core concepts of Amazon Redshift to architect scalable data warehouses. Optimize data pipelines and automate ETL processes for seamless data ingestion and management. Leverage advanced features like concurrency scaling and Redshift Spectrum for enhanced analytics. Apply best practices for security and cost optimization in Redshift projects. Gain expertise in scaling data warehouse solutions to accommodate large-scale analytics needs. Author(s) Shruti Worlikar, None Arumugam, and None Patel are seasoned experts in data warehousing and analytics with extensive experience using Amazon Redshift. Their backgrounds in implementing scalable data solutions make their insights practical and grounded. Through their collaborative writing, they aim to make complex topics approachable to learners of various skill levels. Who is it for? This book is tailored for professionals such as data warehouse developers, data engineers, and data analysts looking to master Amazon Redshift. It suits intermediate to advanced practitioners with a basic understanding of data warehousing and cloud technologies. Readers seeking to optimize Redshift for cost, performance, and security will find this guide invaluable.
Summary Data quality is a concern that has been gaining attention alongside the rising importance of analytics for business success. Many solutions rely on hand-coded rules for catching known bugs, or statistical analysis of records to detect anomalies retroactively. While those are useful tools, it is far better to prevent data errors before they become an outsized issue. In this episode Gleb Mezhanskiy shares some strategies for adding quality checks at every stage of your development and deployment workflow to identify and fix problematic changes to your data before they get to production.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Gleb Mezhanskiy about strategies for proactive data quality management and his work at Datafold to help provide tools for implementing them
Interview
Introduction How did you get involved in the area of data management? Can you describe what you are building at Datafold and the story behind it? What are the biggest factors that you see contributing to data quality issues?
How are teams identifying and addressing those failures?
How does the data platform architecture impact the potential for introducing quality problems? What are some of the potential risks or consequences of introducing errors in data processing? How can organizations shift to being proactive in their data quality management?
How much of a role does tooling play in addressing the introduct
Summary We have been building platforms and workflows to store, process, and analyze data since the earliest days of computing. Over that time there have been countless architectures, patterns, and "best practices" to make that task manageable. With the growing popularity of cloud services a new pattern has emerged and been dubbed the "Modern Data Stack". In this episode members of the GoDataDriven team, Guillermo Sanchez, Bram Ochsendorf, and Juan Perafan, explain the combinations of services that comprise this architecture, share their experiences working with clients to employ the stack, and the benefits of bringing engineers and business users together with data.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management You listen to this show to learn about all of the latest tools, patterns, and practices that power data engineering projects across every domain. Now there’s a book that captures the foundational lessons and principles that underly everything that you hear about here. I’m happy to announce I collected wisdom from the community to help you in your journey as a data engineer and worked with O’Reilly to publish it as 97 Things Every Data Engineer Should Know. Go to dataengineeringpodcast.com/97things today to get your copy! When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Guillermo Sanchez, Bram Ochsendorf, and Juan Perafan about their experiences with managed services in the modern data stack in their work as consultants at GoDataDriven
Interview
Introduction How did you get involved in the area of data management? Can you start by giving your definition of the modern data stack?
What are the key characteristics of a tool or platform that make it a candidate for the "modern" stack?
How does the modern data stack shift the responsibilities and capabilities of data professionals and consumers? What are some difficulties that you face when working with customers to migrate to these new architectures? What are some of the limitations of the components or
Summary At the core of every data pipeline is an workflow manager (or several). Deploying, managing, and scaling that orchestration can consume a large fraction of a data team’s energy so it is important to pick something that provides the power and flexibility that you need. SaaSGlue is a managed service that lets you connect all of your systems, across clouds and physical infrastructure, and spanning all of your programming languages. In this episode Bart and Rich Wood explain how SaaSGlue is architected to allow for a high degree of flexibility in usage and deployment, their experience building a business with family, and how you can get started using it today. This is a fascinating platform with an endless set of use cases and a great team of people behind it.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Rich and Bart Wood about SaasGlue, a SaaS-based integration, orchestration and automation platform that lets you fill the gaps in your existing automation infrastructure
Interview
Introduction How did you get involved in the area of data management? Can you describe what SaasGlue is and the story behind it?
I understand that you are building this company with your 3 brothers. What have been the pros and cons of working with your family on this project?
What are the main use cases that you are focused on enabling?
Who are your target users and how has that influenced the features and design of the platform?
Orchestration, automation, and workflow management are all areas that have a range of active products and projects. How do you characterize SaaSGlue’s position in the overall ecosystem?
What are some of the ways that you see it integrated into a data platform?
What are the core elements and concepts of the SaaSGlue platform? How is the SaaSGlue platform architected?
How have the goals and design of the platform changed or evolved since you first began working on it? What are some of the assumptio
We will describe how we were able to build a system in Airflow for MySQL to Redshift ETL pipelines defined in pure Python using dataclasses. These dataclasses are then used to dynamically generate DAGs depending on pipeline type. This setup allows us to implement robust testing, validation, alerts, and documentation for our pipelines. We will also describe the performance improvements we achieved by upgrading to Airflow 2.0.
Summary While the overall concept of timeseries data is uniform, its usage and applications are far from it. One of the most demanding applications of timeseries data is for application and server monitoring due to the problem of high cardinality. In his quest to build a generalized platform for managing timeseries Paul Dix keeps getting pulled back into the monitoring arena. In this episode he shares the history of the InfluxDB project, the business that he has helped to build around it, and the architectural aspects of the engine that allow for its flexibility in managing various forms of timeseries data. This is a fascinating exploration of the technical and organizational evolution of the Influx Data platform, with some promising glimpses of where they are headed in the near future.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Paul Dix about Influx Data and the different facets of the market for timeseries databases
Interview
Introduction How did you get involved in the area of data management? Can you describe what you are building at Influx Data and the story behind it? Timeseries data is a fairly broad category with many variations in terms of storage volume, frequency, processing requirements, etc. This has led to an explosion of database engines and related tools to address these different needs. How do you think about your position and role in the ecosystem?
Who are your target customers and how does that focus inform your product and feature priorities? What are the use cases that Influx is best suited for?
Can you give an overview of the different projects, tools, and services that comprise your platform? How is InfluxDB architected?
How have the design and implementation of the DB engine changed or evolved since you first began working on it? What are you optimizing for on the consistency vs. availability spectrum of CAP? What is your approach to clustering/data distribution beyond a single node?
Summary The database is the core of any system because it holds the data that drives your entire experience. We spend countless hours designing the data model, updating engine versions, and tuning performance. But how confident are you that you have configured it to be as performant as possible, given the dozens of parameters and how they interact with each other? Andy Pavlo researches autonomous database systems, and out of that research he created OtterTune to find the optimal set of parameters to use for your specific workload. In this episode he explains how the system works, the challenge of scaling it to work across different database engines, and his hopes for the future of database systems.
Announcements
Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! RudderStack’s smart customer data pipeline is warehouse-first. It builds your customer data warehouse and your identity graph on your data warehouse, with support for Snowflake, Google BigQuery, Amazon Redshift, and more. Their SDKs and plugins make event streaming easy, and their integrations with cloud applications like Salesforce and ZenDesk help you go beyond event streaming. With RudderStack you can use all of your customer data to answer more difficult questions and then send those insights to your whole customer data stack. Sign up free at dataengineeringpodcast.com/rudder today. We’ve all been asked to help with an ad-hoc request for data by the sales and marketing team. Then it becomes a critical report that they need updated every week or every day. Then what do you do? Send a CSV via email? Write some Python scripts to automate it? But what about incremental sync, API quotas, error handling, and all of the other details that eat up your time? Today, there is a better way. With Census, just write SQL or plug in your dbt models and start syncing your cloud warehouse to SaaS applications like Salesforce, Marketo, Hubspot, and many more. Go to dataengineeringpodcast.com/census today to get a free 14-day trial. Your host is Tobias Macey and today I’m interviewing Andy Pavlo about OtterTune, a system to continuously monitor and improve database performance via machine learning
Interview
Introduction How did you get involved in the area of data management? Can you describe what OtterTune is and the story behind it?
How does it relate to your work with NoisePage?
What are the challenges that database administrators, operators, and users run into when working with, configuring, and tuning transactional systems?
What are some of the contributing factors to the sprawling complexity of the configurable parameters for these databases?
Can you describe how OtterTune is implemented?
What are some of the aggregate benefits that OtterTune can gain by running as a centralized service and learning from all of the systems that it connects to? What are some of the assumptions that you made when starting the commercialization of this technology that have been challenged or invalidated as you began working with initial customers? How have the design and goals of the system changed or evolved since you first began working on it?
What is involved in adding support for a new database engine?
How applicable are the OtterTune capabilities to analyti