talk-data.com talk-data.com

Topic

DWH

Data Warehouse

analytics business_intelligence data_storage

568

tagged

Activity Trend

35 peak/qtr
2020-Q1 2026-Q1

Activities

568 activities · Newest first

Hadoop: Data Processing and Modelling

Unlock the power of your data with Hadoop 2.X ecosystem and its data warehousing techniques across large data sets About This Book Conquer the mountain of data using Hadoop 2.X tools The authors succeed in creating a context for Hadoop and its ecosystem Hands-on examples and recipes giving the bigger picture and helping you to master Hadoop 2.X data processing platforms Overcome the challenging data processing problems using this exhaustive course with Hadoop 2.X Who This Book Is For This course is for Java developers, who know scripting, wanting a career shift to Hadoop - Big Data segment of the IT industry. So if you are a novice in Hadoop or an expert, this book will make you reach the most advanced level in Hadoop 2.X. What You Will Learn Best practices for setup and configuration of Hadoop clusters, tailoring the system to the problem at hand Integration with relational databases, using Hive for SQL queries and Sqoop for data transfer Installing and maintaining Hadoop 2.X cluster and its ecosystem Advanced Data Analysis using the Hive, Pig, and Map Reduce programs Machine learning principles with libraries such as Mahout and Batch and Stream data processing using Apache Spark Understand the changes involved in the process in the move from Hadoop 1.0 to Hadoop 2.0 Dive into YARN and Storm and use YARN to integrate Storm with Hadoop Deploy Hadoop on Amazon Elastic MapReduce and Discover HDFS replacements and learn about HDFS Federation In Detail As Marc Andreessen has said "Data is eating the world," which can be witnessed today being the age of Big Data, businesses are producing data in huge volumes every day and this rise in tide of data need to be organized and analyzed in a more secured way. With proper and effective use of Hadoop, you can build new-improved models, and based on that you will be able to make the right decisions. The first module, Hadoop beginners Guide will walk you through on understanding Hadoop with very detailed instructions and how to go about using it. Commands are explained using sections called "What just happened" for more clarity and understanding. The second module, Hadoop Real World Solutions Cookbook, 2nd edition, is an essential tutorial to effectively implement a big data warehouse in your business, where you get detailed practices on the latest technologies such as YARN and Spark. Big data has become a key basis of competition and the new waves of productivity growth. Hence, once you get familiar with the basics and implement the end-to-end big data use cases, you will start exploring the third module, Mastering Hadoop. So, now the question is if you need to broaden your Hadoop skill set to the next level after you nail the basics and the advance concepts, then this course is indispensable. When you finish this course, you will be able to tackle the real-world scenarios and become a big data expert using the tools and the knowledge based on the various step-by-step tutorials and recipes. Style and approach This course has covered everything right from the basic concepts of Hadoop till you master the advance mechanisms to become a big data expert. The goal here is to help you learn the basic essentials using the step-by-step tutorials and from there moving toward the recipes with various real-world solutions for you. It covers all the important aspects of Hadoop from system designing and configuring Hadoop, machine learning principles with various libraries with chapters illustrated with code fragments and schematic diagrams. This is a compendious course to explore Hadoop from the basics to the most advanced techniques available in Hadoop 2.X.

Disruptive Analytics: Charting Your Strategy for Next-Generation Business Analytics

Learn all you need to know about seven key innovations disrupting business analytics today. These innovations—the open source business model, cloud analytics, the Hadoop ecosystem, Spark and in-memory analytics, streaming analytics, Deep Learning, and self-service analytics—are radically changing how businesses use data for competitive advantage. Taken together, they are disrupting the business analytics value chain, creating new opportunities. Enterprises who seize the opportunity will thrive and prosper, while others struggle and decline: disrupt or be disrupted. Disruptive Business Analytics provides strategies to profit from disruption. It shows you how to organize for insight, build and provision an open source stack, how to practice lean data warehousing, and how to assimilate disruptive innovations into an organization. Through a short history of business analytics and a detailed survey of products and services, analytics authority Thomas W. Dinsmore provides a practical explanation of the most compelling innovations available today. What You'll Learn Discover how the open source business model works and how to make it work for you See how cloud computing completely changes the economics of analytics Harness the power of Hadoop and its ecosystem Find out why Apache Spark is everywhere Discover the potential of streaming and real-time analytics Learn what Deep Learning can do and why it matters See how self-service analytics can change the way organizations do business Who This Book Is For Corporate actors at all levels of responsibility for analytics: analysts, CIOs, CTOs, strategic decision makers, managers, systems architects, technical marketers, product developers, IT personnel, and consultants.

Practical Hive: A Guide to Hadoop's Data Warehouse System

Dive into the world of SQL on Hadoop and get the most out of your Hive data warehouses. This book is your go-to resource for using Hive: authors Scott Shaw, Ankur Gupta, David Kjerrumgaard, and Andreas Francois Vermeulen take you through learning HiveQL, the SQL-like language specific to Hive, to analyze, export, and massage the data stored across your Hadoop environment. From deploying Hive on your hardware or virtual machine and setting up its initial configuration to learning how Hive interacts with Hadoop, MapReduce, Tez and other big data technologies, Practical Hive gives you a detailed treatment of the software. In addition, this book discusses the value of open source software, Hive performance tuning, and how to leverage semi-structured and unstructured data. What You Will Learn Install and configure Hive for new and existing datasets Perform DDL operations Execute efficient DML operations Use tables, partitions, buckets, and user-defined functions Discover performance tuning tips and Hive best practices Who This Book Is For Developers, companies, and professionals who deal with large amounts of data and could use software that can efficiently manage large volumes of input. It is assumed that readers have the ability to work with SQL.

Practical Hadoop Migration: How to Integrate Your RDBMS with the Hadoop Ecosystem and Re-Architect Relational Applications to NoSQL

Re-architect relational applications to NoSQL, integrate relational database management systems with the Hadoop ecosystem, and transform and migrate relational data to and from Hadoop components. This book covers the best-practice design approaches to re-architecting your relational applications and transforming your relational data to optimize concurrency, security, denormalization, and performance. Winner of IBM's 2012 Gerstner Award for his implementation of big data and data warehouse initiatives and author of Practical Hadoop Security, author Bhushan Lakhe walks you through the entire transition process. First, he lays out the criteria for deciding what blend of re-architecting, migration, and integration between RDBMS and HDFS best meets your transition objectives. Then he demonstrates how to design your transition model. Lakhe proceeds to cover the selection criteria for ETL tools, the implementation steps for migration with SQOOP- and Flume-based data transfers, and transition optimization techniques for tuning partitions, scheduling aggregations, and redesigning ETL. Finally, he assesses the pros and cons of data lakes and Lambda architecture as integrative solutions and illustrates their implementation with real-world case studies. Hadoop/NoSQL solutions do not offer by default certain relational technology features such as role-based access control, locking for concurrent updates, and various tools for measuring and enhancing performance. Practical Hadoop Migration shows how to use open-source tools to emulate such relational functionalities in Hadoop ecosystem components. What You'll Learn Decide whether you should migrate your relational applications to big data technologies or integrate them Transition your relational applications to Hadoop/NoSQL platforms in terms of logical design and physical implementation Discover RDBMS-to-HDFS integration, data transformation, and optimization techniques Consider when to use Lambda architecture and data lake solutions Select and implement Hadoop-based components and applications to speed transition, optimize integrated performance, and emulate relational functionalities Who This Book Is For Database developers, database administrators, enterprise architects, Hadoop/NoSQL developers, and IT leaders. Its secondary readership is project and program managers and advanced students of database and management information systems.

Expert Scripting and Automation for SQL Server DBAs

Automate your workload and manage more databases and instances with greater ease and efficiency by combining metadata-driven automation with powerful tools like PowerShell and SQL Server Agent. Automate your new instance-builds and use monitoring to drive ongoing automation, with the help of an inventory database and a management data warehouse. The market has seen a trend towards there being a much smaller ratio of DBAs to SQL Server instances. Automation is the key to responding to this challenge and continuing to run a reliable database platform service. guides you through the process of automating the maintenance of your SQL Server enterprise. Expert Scripting and Automation for SQL Server DBAs shows how to automate the SQL Server build processes, monitor multiple instances from a single location, and automate routine maintenance tasks throughout your environment. You will also learn how to create automated responses to common or time consuming break/fix scenarios. The book helps you become faster and better at what you do for a living, and thus more valuable in the job market. Expert Scripting and Automation for SQL Server DBAs Extensive coverage of automation using PowerShell and T-SQL Detailed discussion and examples on metadata-driven automation Comprehensive coverage of automated responses to break/fix scenarios What You Will Learn Automate the SQL Server build process Create intelligent, metadata-drive routines Automate common maintenance tasks Create automated responses to common break/fix scenarios Monitor multiple instance from a central location Utilize T-SQL and PowerShell for administrative purposes Who This Book Is For is a book for SQL Server database administrators responsible for managing increasingly large numbers of databases across their business enterprise. The book is also useful for any database administrator looking to ease their workload through automation. The book addresses the needs of these audiences by showing how to get more done through less effort by implementing an intelligent, automated-processes service model using tools such as T-SQL, PowerShell, Server Agent, and the Management Data Warehouse. Expert Scripting and Automation for SQL Server DBAs

Hadoop: What You Need to Know

Hadoop has revolutionized data processing and enterprise data warehousing, but its explosive growth has come with a large amount of uncertainty, hype, and confusion. With this report, enterprise decision makers will receive a concise crash course on what Hadoop is and why it’s important. Hadoop represents a major shift from traditional enterprise data warehousing and data analytics, and its technology can be daunting at first. Donald Miner, founder of the data science firm Miner & Kasch, covers just enough ground so you can make intelligent decisions about Hadoop in your enterprise. By the end of this report, you’ll know the basics of technologies such as HDFS, MapReduce, and YARN, without becoming mired in the details. Not only will you learn the basics of how Hadoop works and why it’s such an important technology, you’ll get examples of how you should probably be using it.

Integrated Analytics

Companies are collecting more data than ever. But, given how difficult it is to unify the many internal and external data streams they’ve built, more data doesn’t necessarily translate into better analytics. The real challenge is to provide deep and broad access to “a single source of truth” in their data that the typically slow ETL process for data warehousing cannot achieve. More than just fast access, analysts need the ability to explore data at a granular level. In this O’Reilly report, author Courtney Webster presents a roadmap to data centralization that will help your organization make data accessible, flexible, and actionable. Building a genuine data-driven culture depends on your company’s ability to quickly act upon new findings. This report explains how. Identify stakeholders: build a culture of trust and awareness among decision makers, data analysts, and quality management Create a data plan: define your needs, specify your metrics, identify data sources, and standardize metric definitions Centralize the data: evaluate each data source for existing common fields and, if you can, minor variances, and standardize data references Find the right tool(s) for the job: choose from legacy architecture tools, managed and cloud-only services, and data visualization or data exploration platforms Courtney Webster is a reformed chemist in the Washington, D.C. metro area. She spent a few years after grad school programming robots to do chemistry and is now managing web and mobile applications for clinical research trials.

IBM Financial Transaction Manager for Automated Clearing House Services

Automated Clearing House (ACH) payment volume is increasing every year. NACHA estimates that ACH payments crossed 21 billion several years ago. Financial institutions are re-evaluating their current payment platforms. Financial Transaction Manager is a single interface that can handle ACH needs that cross various platforms. IBM® Financial Transaction Manager for ACH Services provides pre-built support for processing all ACH transactions that flow through financial systems. This includes ingestion, validation, transaction management, and distribution. The robust rules-based environment handles payment routing and exception management, and an automated import and export facility handles ACH processing rules. Further functions include administration, process management, data warehousing, and reporting and extracts. This IBM Redbooks® publication is written for the business analyst (banker), and the computer administrators responsible for configuration of the system. A business analyst can use this book to see what process within Financial Transaction Manger are associated with their banking terms. A bridge is built from banking terms to configuration terms. A system administrator can look into this publication to see exactly how to configure Financial Transaction Manager for ACH to the needs of their financial institution. By creating reference points for both the business analyst and the system administrator, communication and understanding is enhanced as both teams understand each other's terminology and how to use Financial Transaction Manager for ACH.

Business Statistics Made Easy in SAS

Learn or refresh core statistical methods for business with SAS® and approach real business analytics issues and techniques using a practical approach that avoids complex mathematics and instead employs easy-to-follow explanations.

Business Statistics Made Easy in SAS® is designed as a user-friendly, practice-oriented, introductory text to teach businesspeople, students, and others core statistical concepts and applications. It begins with absolute core principles and takes you through an overview of statistics, data and data collection, an introduction to SAS®, and basic statistics (descriptive statistics and basic associational statistics). The book also provides an overview of statistical modeling, effect size, statistical significance and power testing, basics of linear regression, introduction to comparison of means, basics of chi-square tests for categories, extrapolating statistics to business outcomes, and some topical issues in statistics, such as big data, simulation, machine learning, and data warehousing.

The book steers away from complex mathematical-based explanations, and it also avoids basing explanations on the traditional build-up of distributions, probability theory and the like, which tend to lose the practice-oriented reader. Instead, it teaches the core ideas of statistics through methods such as careful, intuitive written explanations, easy-to-follow diagrams, step-by-step technique implementation, and interesting metaphors.

With no previous SAS experience necessary, Business Statistics Made Easy in SAS® is an ideal introduction for beginners. It is suitable for introductory undergraduate classes, postgraduate courses such as MBA refresher classes, and for the business practitioner. It is compatible with SAS® University Edition.

Agile Data Warehousing for the Enterprise

Building upon his earlier book that detailed agile data warehousing programming techniques for the Scrum master, Ralph's latest work illustrates the agile interpretations of the remaining software engineering disciplines: Requirements management benefits from streamlined templates that not only define projects quickly, but ensure nothing essential is overlooked. Data engineering receives two new "hyper modeling" techniques, yielding data warehouses that can be easily adapted when requirements change without having to invest in ruinously expensive data-conversion programs. Quality assurance advances with not only a stereoscopic top-down and bottom-up planning method, but also the incorporation of the latest in automated test engines. Use this step-by-step guide to deepen your own application development skills through self-study, show your teammates the world's fastest and most reliable techniques for creating business intelligence systems, or ensure that the IT department working for you is building your next decision support system the right way. Learn how to quickly define scope and architecture before programming starts Includes techniques of process and data engineering that enable iterative and incremental delivery Demonstrates how to plan and execute quality assurance plans and includes a guide to continuous integration and automated regression testing Presents program management strategies for coordinating multiple agile data mart projects so that over time an enterprise data warehouse emerges Use the provided 120-day road map to establish a robust, agile data warehousing program

Building a Scalable Data Warehouse with Data Vault 2.0

The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. Important data warehouse technologies and practices. Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse Demystifies data vault modeling with beginning, intermediate, and advanced techniques Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0

Getting Data Right

Over the last 20 years, companies have invested roughly $3-4 trillion in enterprise software. These investments have been primarily focused on the development and deployment of single systems, applications, functions, and geographies targeted at the automation and optimization of key business processes. Companies are now investing heavily in big data analytics ($44 billion alone in 2014) in an effort to begin analyzing all of the data being generated from their process automation systems. But companies are quickly realizing that one of their key bottlenecks is Data Variety—the silo’d nature of the data that is a natural result of internal and external source proliferation. The problem of big data variety has crept up from the bottom—and the cost of variety is only appreciated when companies attempt to ask simple questions across many business silos (divisions, geographies, functions, etc.). Current top-down, deterministic data unification approaches (such as ETL, ELT, and MDM) were simply not designed to scale to the variety of hundreds or thousands or even tens of thousands of data silos. Download this free eBook to learn about the fundamental challenges that Data Variety poses to enterprises looking to maximize the value of their existing investments—and how new approaches promise to help organizations embrace and leverage the fundamental diversity of data. Readers will also find best practices for designing bottom-up and probabilistic methods for finding and managing data; principles for doing data science at scale in the big data era; preparing and unifying data in ways that complement existing systems; optimizing data warehousing; and how to use “data ops” to automate large-scale integration.

Structured Search for Big Data

The WWW era made billions of people dramatically dependent on the progress of data technologies, out of which Internet search and Big Data are arguably the most notable. Structured Search paradigm connects them via a fundamental concept of key-objects evolving out of keywords as the units of search. The key-object data model and KeySQL revamp the data independence principle making it applicable for Big Data and complement NoSQL with full-blown structured querying functionality. The ultimate goal is extracting Big Information from the Big Data. As a Big Data Consultant, Mikhail Gilula combines academic background with 20 years of industry experience in the database and data warehousing technologies working as a Sr. Data Architect for Teradata, Alcatel-Lucent, and PayPal, among others. He has authored three books, including The Set Model for Database and Information Systems and holds four US Patents in Structured Search and Data Integration. Conceptualizes structured search as a technology for querying multiple data sources in an independent and scalable manner. Explains how NoSQL and KeySQL complement each other and serve different needs with respect to big data Shows the place of structured search in the internet evolution and describes its implementations including the real-time structured internet search

IBM Cognos Dynamic Cubes

IBM® Cognos® Business Intelligence (BI) provides a proven enterprise BI platform with an open data strategy. Cognos BI provides customers with the ability to use data from any source, package it into a business model, and make it available to consumers in various interfaces that are tailored to the task. IBM Cognos Dynamic Cubes complements the existing Cognos BI capabilities and continues the tradition of an open data model. It focuses on extending the scalability of the IBM Cognos platform to enable speed-of-thought analytics over terabytes of enterprise data, without having to invest in a new data warehouse appliance. This capability adds a new level of query intelligence so you can unleash the power of your enterprise data warehouse. This IBM Redbooks® publication addresses IBM Cognos Business Intelligence V10.2.2 and specifically, the IBM Cognos Dynamic Cubes capabilities. This book can help you in the following ways: Understand core features of the Cognos Dynamic Cubes capabilities of Cognos BI V10.2 Learn by example with practical scenarios by using the IBM Cognos samples This book uses fictional business scenarios to demonstrate the power and capabilities of IBM Cognos Dynamic Cubes. It primarily focuses on the roles of the modeler, administrator, and IT architect.

Microsoft SQL Server 2014 Unleashed

The industry’s most complete, useful, and up-to-date guide to SQL Server 2014. You’ll find start-to-finish coverage of SQL Server’s core database server and management capabilities: all the real-world information, tips, guidelines, and examples you’ll need to install, monitor, maintain, and optimize the most complex database environments. The provided examples and sample code provide plenty of hands-on opportunities to learn more about SQL Server and create your own viable solutions. Four leading SQL Server experts present deep practical insights for administering SQL Server, analyzing and optimizing queries, implementing data warehouses, ensuring high availability, tuning performance, and much more. You will benefit from their behind-the-scenes look into SQL Server, showing what goes on behind the various wizards and GUI-based tools. You’ll learn how to use the underlying SQL commands to fully unlock the power and capabilities of SQL Server. Writing for all intermediate-to-advanced-level SQL Server professionals, the authors draw on immense production experience with SQL Server. Throughout, they focus on successfully applying SQL Server 2014’s most powerful capabilities and its newest tools and features. Detailed information on how to… Understand SQL Server 2014’s new features and each edition’s capabilities and licensing Install, upgrade to, and configure SQL Server 2014 for better performance and easier management Streamline and automate key administration tasks with Smart Admin Leverage powerful new backup/restore options: flexible backup to URL, Managed Backup to Windows Azure, and encrypted backups Strengthen security with new features for enforcing “least privilege” Improve performance with updateable columnstore indexes, Delayed Durability, and other enhancements Execute queries and business logic more efficiently with memoryoptimized tables, buffer pool extension, and natively-compiled stored procedures Control workloads and Disk I/O with the Resource Governor Deploy AlwaysOn Availability Groups and Failover Cluster Instances to achieve enterprise-class availability and disaster recovery Apply new Business Intelligence improvements in Master Data Services, data quality, and Parallel Data Warehouse

Oracle SQL Developer Data Modeler for Database Design Mastery

Design Databases with Oracle SQL Developer Data Modeler In this practical guide, Oracle ACE Director Heli Helskyaho explains the process of database design using Oracle SQL Developer Data Modeler—the powerful, free tool that flawlessly supports Oracle and other database environments, including Microsoft SQL Server and IBM DB2. Oracle SQL Developer Data Modeler for Database Design Mastery covers requirement analysis, conceptual, logical, and physical design, data warehousing, reporting, and more. Create and deploy high-performance enterprise databases on any platform using the expert tips and best practices in this Oracle Press book. Configure Oracle SQL Developer Data Modeler Perform requirement analysis Translate requirements into a formal conceptual data model and process models Transform the conceptual (logical) model into a relational model Manage physical database design Generate data definition language (DDL) scripts to create database objects Design a data warehouse database Use subversion for version control and to enable a multiuser environment Document an existing database Use the reporting tools in Oracle SQL Developer Data Modeler Compare designs and the database

Learning Informatica PowerCenter 9.x

Master the essentials of Informatica PowerCenter 9.x with this comprehensive guide. Whether you are new to the platform or an experienced user, this book provides the knowledge and techniques needed to extract, integrate, and manage data effectively across diverse systems. By learning key functionalities and advanced techniques, you'll become proficient in creating and optimizing data integration workflows. What this Book will help me do Install, configure, and customize Informatica PowerCenter to suit your project requirements. Understand graphical interfaces such as the Designer and Workflow Manager for effective development. Implement data warehousing concepts like Slowly Changing Dimensions (SCDs) using Informatica tools. Optimize data integration workflows through performance tuning and advanced debugging techniques. Execute seamless migrations of components across environments using repository management features. Author(s) Rahul Malewar is an experienced data integration specialist with a strong background in Informatica and data warehousing. With years of practical experience in implementing and deploying complex Informatica solutions, Rahul brings technical expertise combined with a clear and accessible teaching style. His books and courses are widely recognized for helping readers efficiently tackle real-world data challenges. Who is it for? This book is best suited for IT professionals, data analysts, and developers interested in mastering data integration concepts and tools through Informatica PowerCenter. If you work in data warehousing or are stepping into the field, this book provides essential knowledge. Beginner users will find step-by-step guidance, while experienced professionals will deepen their expertise. Prior knowledge in programming and data warehousing is beneficial.

Predictive Analytics and Data Mining

Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Data Architecture: A Primer for the Data Scientist

Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or architecture it can’t be used to its full potential. Data Architecture a Primer for the Data Scientist addresses the larger architectural picture of how Big Data fits with the existing information infrastructure, an essential topic for the data scientist. Drawing upon years of practical experience and using numerous examples and an easy to understand framework. W.H. Inmon, and Daniel Linstedt define the importance of data architecture and how it can be used effectively to harness big data within existing systems. You’ll be able to: Turn textual information into a form that can be analyzed by standard tools. Make the connection between analytics and Big Data Understand how Big Data fits within an existing systems environment Conduct analytics on repetitive and non-repetitive data Discusses the value in Big Data that is often overlooked, non-repetitive data, and why there is significant business value in using it Shows how to turn textual information into a form that can be analyzed by standard tools Explains how Big Data fits within an existing systems environment Presents new opportunities that are afforded by the advent of Big Data Demystifies the murky waters of repetitive and non-repetitive data in Big Data

Enterprise Business Intelligence and Data Warehousing

Corporations and governmental agencies of all sizes are embracing a new generation of enterprise-scale business intelligence (BI) and data warehousing (DW), and very often appoint a single senior-level individual to serve as the Enterprise BI/DW Program Manager. This book is the essential guide to the incremental and iterative build-out of a successful enterprise-scale BI/DW program comprised of multiple underlying projects, and what the Enterprise Program Manager must successfully accomplish to orchestrate the many moving parts in the quest for true enterprise-scale business intelligence and data warehousing. Author Alan Simon has served as an enterprise business intelligence and data warehousing program management advisor to many of his clients, and spent an entire year with a single client as the adjunct consulting director for a $10 million enterprise data warehousing (EDW) initiative. He brings a wealth of knowledge about best practices, risk management, organizational culture alignment, and other Critical Success Factors (CSFs) to the discipline of enterprise-scale business intelligence and data warehousing.