talk-data.com talk-data.com

Topic

Cloud Computing

infrastructure saas iaas

4055

tagged

Activity Trend

471 peak/qtr
2020-Q1 2026-Q1

Activities

4055 activities · Newest first

In the physical world, you can see a bridge rusting or a building facade crumbling and know you have to intervene to prevent the infrastructure from collapsing. But when all you have is bits and bytes - digital stuff, like software and data ---how can you tell if your customer-facing digital interactions or data-driven analytics and models are about to go up in smoke?

Observability is a new term that describes what we used to call IT monitoring. The new moniker is fitting given all the technology changes that have happened in the past decade. The cloud, big data, microservices, containers, cloud applications, machine learning, and artificial intelligence have created a dramatically complex IT and data environment that is harder than ever to manage. And the stakes are higher as organizations move their operations online to compete with digital natives. Today, you can't run digital or data operations without observability tools.

Kevin Petrie is one of the industry's foremost experts on observability. He is vice president of research at Eckerson Group where he leads a team of distinguished analysts. He recently wrote an article titled "The Five Shades of Observability" that describes five types of observability tools. In this podcast, we discuss what observability is, why you need it, and the types of available tools. We also speculate on the future of this technology and recommend how to select an appropriate observability product.

Summary Data engineering is a relatively young and rapidly expanding field, with practitioners having a wide array of experiences as they navigate their careers. Ashish Mrig currently leads the data analytics platform for Wayfair, as well as running a local data engineering meetup. In this episode he shares his career journey, the challenges related to management of data professionals, and the platform design that he and his team have built to power analytics at a large company. He also provides some excellent insights into the factors that play into the build vs. buy decision at different organizational sizes.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. The only thing worse than having bad data is not knowing that you have it. With Bigeye’s data observability platform, if there is an issue with your data or data pipelines you’ll know right away and can get it fixed before the business is impacted. Bigeye let’s data teams measure, improve, and communicate the quality of your data to company stakeholders. With complete API access, a user-friendly interface, and automated yet flexible alerting, you’ve got everything you need to establish and maintain trust in your data. Go to dataengineeringpodcast.com/bigeye today to sign up and start trusting your analyses. Your host is Tobias Macey and today I’m interviewing Ashish Mrig about his path as a data engineer

Interview

Introduction How did you get involved in the area of data management? You currently lead a data engineering team at a relatively large company. What are the topics that account for the majority of your time and energy? What are some of the most valuable lessons that you’ve learned about managing and motivating teams of data professionals? What has been your most consistent challenge across the different generations of the data ecosystem? How is your current data platform architected? Given the current state of the technology and services landscape, how would you approach the design and implementation of a greenfield rebuild of your platform? What are some of the pitfalls that you have seen data teams encounter most frequently? You are running a data engineering meetup for your local community in the Boston area. What have been some of the recurring themes that are discussed in those events?

Contact Info

Medium Blog LinkedIn

Summary Data platforms are exemplified by a complex set of connections that are subject to a set of constantly evolving requirements. In order to make this a tractable problem it is necessary to define boundaries for communication between concerns, which brings with it the need to establish interface contracts for communicating across those boundaries. The recent move toward the data mesh as a formalized architecture that builds on this design provides the language that data teams need to make this a more organized effort. In this episode Abhi Sivasailam shares his experience designing and implementing a data mesh solution with his team at Flexport, and the importance of defining and enforcing data contracts that are implemented at those domain boundaries.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Your host is Tobias Macey and today I’m interviewing Abhi Sivasailam about the different social and technical interfaces available for defining and enforcing data contracts

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what your working definition of a "data contract" is?

What are the goals and purpose of these contracts?

What are the locations and methods of defining a data contract?

What kind of information needs to be encoded in a contract definition?

How do you manage enforcement of contracts? manifestations of contracts in data mesh implementation ergonomics (technical and social) of data contracts and how to prevent them from prohibiting productivity What are the most interesting, innovative

Cassandra: The Definitive Guide, (Revised) Third Edition, 3rd Edition

Imagine what you could do if scalability wasn't a problem. With this hands-on guide, you'll learn how the Cassandra database management system handles hundreds of terabytes of data while remaining highly available across multiple data centers. This revised third edition--updated for Cassandra 4.0 and new developments in the Cassandra ecosystem, including deployments in Kubernetes with K8ssandra--provides technical details and practical examples to help you put this database to work in a production environment. Authors Jeff Carpenter and Eben Hewitt demonstrate the advantages of Cassandra's nonrelational design, with special attention to data modeling. Developers, DBAs, and application architects looking to solve a database scaling issue or future-proof an application will learn how to harness Cassandra's speed and flexibility. Understand Cassandra's distributed and decentralized structure Use the Cassandra Query Language (CQL) and cqlsh (the CQL shell) Create a working data model and compare it with an equivalent relational model Design and develop applications using client drivers Explore cluster topology and learn how nodes exchange data Maintain a high level of performance in your cluster Deploy Cassandra onsite, in the cloud, or with Docker and Kubernetes Integrate Cassandra with Spark, Kafka, Elasticsearch, Solr, and Lucene

Summary Applications of data have grown well beyond the venerable business intelligence dashboards that organizations have relied on for decades. Now it is being used to power consumer facing services, influence organizational behaviors, and build sophisticated machine learning systems. Given this increased level of importance it has become necessary for everyone in the business to treat data as a product in the same way that software applications have driven the early 2000s. In this episode Brian McMillan shares his work on the book "Building Data Products" and how he is working to educate business users and data professionals about the combination of technical, economical, and business considerations that need to be blended for these projects to succeed.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Your host is Tobias Macey and today I’m interviewing Brian McMillan about building data products and his book to introduce the work of data analysts and engineers to non-programmers

Interview

Introduction How did you get involved in the area of data management? Can you describe what motivated you to write a book about the work of building data products?

Who is your target audience? What are the main goals that you are trying to achieve through the book?

What

Summary Reverse ETL is a product category that evolved from the landscape of customer data platforms with a number of companies offering their own implementation of it. While struggling with the work of automating data integration workflows with marketing, sales, and support tools Brian Leonard accidentally discovered this need himself and turned it into the open source framework Grouparoo. In this episode he explains why he decided to turn these efforts into an open core business, how the platform is implemented, and the benefits of having an open source contender in the landscape of operational analytics products.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! StreamSets DataOps Platform is the world’s first single platform for building smart data pipelines across hybrid and multi-cloud architectures. Build, run, monitor and manage data pipelines confidently with an end-to-end data integration platform that’s built for constant change. Amp up your productivity with an easy-to-navigate interface and 100s of pre-built connectors. And, get pipelines and new hires up and running quickly with powerful, reusable components that work across batch and streaming. Once you’re up and running, your smart data pipelines are resilient to data drift. Those ongoing and unexpected changes in schema, semantics, and infrastructure. Finally, one single pane of glass for operating and monitoring all your data pipelines. The full transparency and control you desire for your data operations. Get started building pipelines in minutes for free at dataengineeringpodcast.com/streamsets. The first 10 listeners of the podcast that subscribe to StreamSets’ Professional Tier, receive 2 months free after their first month. Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription Your host is Tobias Macey and today I’m interviewing Brian Leonard about Grouparoo, an open source framework for managing your reverse ETL pipelines

Interview

Introduction How did you get involved in the area of data management? Can you describe what Grouparoo is and the story behind it? What are the core requirements for building a reverse ETL system?

What are the additional capabilities that users of the system ask for as they get more advanced in their usage?

Who is your target user for Grouparoo and how does that influence your priorities on feature development and UX design? What are the benefits of building an open source core for a reverse ETL platform as compared to the other commercial options? Can you describe the architecture and implementation of the Grouparoo project?

What are the additional systems that you have built to support the hosted offering? How have the design and goals of the

Summary Data observability is a set of technical and organizational capabilities related to understanding how your data is being processed and used so that you can proactively identify and fix errors in your workflows. In this episode Metaplane founder Kevin Hu shares his working definition of the term and explains the work that he and his team are doing to cut down on the time to adoption for this new set of practices. He discusses the factors that influenced his decision to start with the data warehouse, the potential shortcomings of that approach, and where he plans to go from there. This is a great exploration of what it means to treat your data platform as a living system and apply state of the art engineering to it.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Today’s episode is Sponsored by Prophecy.io – the low-code data engineering platform for the cloud. Prophecy provides an easy-to-use visual interface to design & deploy data pipelines on Apache Spark & Apache Airflow. Now all the data users can use software engineering best practices – git, tests and continuous deployment with a simple to use visual designer. How does it work? – You visually design the pipelines, and Prophecy generates clean Spark code with tests on git; then you visually schedule these pipelines on Airflow. You can observe your pipelines with built in metadata search and column level lineage. Finally, if you have existing workflows in AbInitio, Informatica or other ETL formats that you want to move to the cloud, you can import them automatically into Prophecy making them run productively on Spark. Create your free account today at dataengineeringpodcast.com/prophecy. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Kevin Hu about Metaplane, a platform aiming to provide observability for modern data stacks, from warehouses to BI dashboards and everything in between.

Interview

Introduction How did you get involved in the area of data management? Can you describe what Metaplane is and the story behind it? Data observability is an area that has seen a huge amount of activity over the past couple of years. What is your working definition of that term?

What are the areas of differentiation that you see across vendors in the space?

Can you describe how the Metaplane platform is architected?

How have the design and goals of Metaplane changed or evolved since you started working on it?

establishing seasonality in data metrics blind spots from operating at the level of the data warehouse What are the most interesting, innovative, or unexpected ways that you have seen Metaplane used? What are the most interesti

Send us a text Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.

Abstract Making Data Simple Podcast is hosted by Al Martin, VP, IBM Expert Services Delivery, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun. This week on Making Data Simple, we have Kim Smith. Kim is Global Vice President, Hybrid Cloud Services Consulting at IBM. Kim is author, UNCTAD speaker, executive board member, top 10 women in cloud, 10 ten game changing female leaders.  Show Notes 1:25 – Kim’s experience 5:44 – What did you code in? 8:56 – How do you continue to reinvent yourself? 11:29 – What have you done to drive value? 14:02 – Describe your roll at IBM 18:18 – What does IBM offer in Containerization? 24:54 – What use cases are you working on? 28:10 – How does the engagement work? 35:48 – What are the top technology trends going to be? 42:53 – Say more on the top 10 women in Cloud and the top 10 game changing female leaders Connect with the Team Producer Kate Brown - LinkedIn. Producer Steve Templeton - LinkedIn. Host Al Martin - LinkedIn and Twitter.  Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Before starting Chartmetric, Sung worked on Sales Cloud as the Principal Product Manager at Oracle Corporation. Prior to that, he was the first employee/engineer at the publicly-traded gaming company Gamevil (which has a Market Cap of $400MM), where he initiated mobile game development and eventually positioned the company as a leading mobile game developer. 

Sung graduated with a bachelor’s degree of electrical engineering and computer science from Seoul National University, and an MBA from UCLA Anderson School of Management.

He enjoys posting ideas on his blog (http://sungmooncho.com), which has attracted more than 5 million views and is considered as one of the leading tech blogs in Korea. Sung has invested in 10 startups in New York, Silicon Valley, and Seoul (http://angel.co/sung-cho). If you want more free insights, follow our podcast, our blog, and our socials. If you're an artist with a free Chartmetric account, sign up for the artist plan, made exclusively for you, here. If you're new to Chartmetric, follow the URL above after creating a free account here. 

Installing and Configuring IBM Db2 AI for IBM z/OS v1.4.0

Artificial intelligence (AI) enables computers and machines to mimic the perception, learning, problem-solving, and decision-making capabilities of the human mind. AI development is made possible by the availability of large amounts of data and the corresponding development and wide availability of computer systems that can process all that data faster and more accurately than humans can. What happens if you infuse AI with a world-class database management system, such as IBM Db2®? IBM® has done just that with Db2 AI for z/OS (Db2ZAI). Db2ZAI is built to infuse AI and data science to assist businesses in the use of AI to develop applications more easily. With Db2ZAI, the following benefits are realized: Data science functionality Better built applications Improved database performance (and DBA's time and efforts are saved) through simplification and automation of error reporting and routine tasks Machine learning (ML) optimizer to improve query access paths and reduce the need for manual tuning and query optimization Integrated data access that makes data available from various vendors including private cloud providers. This IBM Redpaper® publication helps to simplify your installation by tailoring and configuration of Db2 AI for z/OS®. It was written for system programmers, system administrators, and database administrators.

Summary This has been an active year for the data ecosystem, with a number of new product categories and substantial growth in existing areas. In an attempt to capture the zeitgeist Maura Church, David Wallace, Benn Stancil, and Gleb Mezhanskiy join the show to reflect on the past year and share their thought son the year to come.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Maura Church, David Wallace, Benn Stancil, and Gleb Mezhanskiy about the key themes of 2021 in the data ecosystem and what to expect for next year

Interview

Introduction

How did you get involved in the area of data management?

What were the main themes that you saw data practitioners and vendors focused on this year?

What is the major bottleneck for Data teams in 2021? Will it be the same in 2022? One of the ways to reason about progress in any domain is to look at what was the primary bottleneck of further progress (data adoption for decision making) at different points in time. In the data domain, we have seen a number of bottlenecks, for example, scaling data platforms, the answer to which was Hadoop and on-prem columnar stores and then cloud data warehouses such as Snowflake & BigQuery. Then the problem was data integration and transformation which was solved by data integration vendors and frameworks such as Fivetran / Airbyte, modern orchestration frameworks such as Dagster & dbt and “reverse-ETL” Hightouch. What is the main challenge now?

Will SQL be challenged as a primary interface to analytical data? In 2020 we’ve seen a few launches of post-SQL languages such as Malloy, Preql, metric layer query languages from Transform and Supergrain.

To what extent does speed matter? Over the past

Data Engineering with AWS

Discover how to effectively build and manage data engineering pipelines using AWS with "Data Engineering with AWS". In this hands-on book, you'll explore the foundational principles of data engineering, learn to architect data pipelines, and work with essential AWS services to process, transform, and analyze data. What this Book will help me do Understand and implement modern data engineering pipelines with AWS services. Gain proficiency in automating data ingestion and transformation using Amazon tools. Perform efficient data queries and analysis leveraging Amazon Athena and Redshift. Create insightful data visualizations using Amazon QuickSight. Apply machine learning techniques to enhance data engineering processes. Author(s) None Eagar, a Senior Data Architect with over twenty-five years of experience, specializes in modern data architectures and cloud solutions. With a rich background in applying data engineering to real-world problems, None Eagar shares expertise in a clear and approachable way for readers. Who is it for? This book is perfect for data engineers and data architects aiming to grow their expertise in AWS-based solutions. It's also geared towards beginners in data engineering wanting to adopt the best practices. Those with a basic understanding of big data and cloud platforms will find it particularly valuable, but prior AWS experience is not required.

Optimizing Databricks Workloads

Unlock the full potential of Apache Spark on the Databricks platform with "Optimizing Databricks Workloads". This book equips you with must-know techniques to effectively configure, manage, and optimize big data processing pipelines. Dive into real-world scenarios and learn practical approaches to reduce costs and improve performance in your data engineering processes. What this Book will help me do Understand and apply optimization techniques for Databricks workloads. Choose the right cluster configurations to maximize efficiency and minimize costs. Leverage Delta Lake for performance-boosted data processing and optimization. Develop skills for managing Spark DataFrames and core functionalities in Databricks. Gain insights into real-world scenarios to effectively improve workload performance. Author(s) Anirudh Kala and the co-authors are experienced practitioners in the fields of data engineering and analytics. With years of professional expertise in leveraging Apache Spark and Databricks, they bring real-world insight into performance optimization. Their approach blends practical instruction with actionable strategies, making this book an essential guide for data engineers aiming to excel in this domain. Who is it for? This book is tailored for data engineers, data scientists, and cloud architects looking to elevate their skills in managing Databricks workloads. Ideal for readers with basic knowledge of Spark and Databricks, it helps them get hands-on with optimization techniques. If you are aiming to enhance your Spark-based data processing systems, this book offers the guidance you need.

Summary Building a well managed data ecosystem for your organization requires a holistic view of all of the producers, consumers, and processors of information. The team at Metaphor are building a fully connected metadata layer to provide both technical and social intelligence about your data. In this episode Pardhu Gunnam and Mars Lan explain how they have designed the architecture and user experience to allow everyone to collaborate on the data lifecycle and provide opportunities for automation and extensible workflows.

Announcements

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show! Struggling with broken pipelines? Stale dashboards? Missing data? If this resonates with you, you’re not alone. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform! In the same way that application performance monitoring ensures reliable software and keeps application downtime at bay, Monte Carlo solves the costly problem of broken data pipelines. Monte Carlo monitors and alerts for data issues across your data warehouses, data lakes, ETL, and business intelligence, reducing time to detection and resolution from weeks or days to just minutes. Start trusting your data with Monte Carlo today! Visit dataengineeringpodcast.com/montecarlo to learn more. The first 10 people to request a personalized product tour will receive an exclusive Monte Carlo Swag box. Are you bored with writing scripts to move data into SaaS tools like Salesforce, Marketo, or Facebook Ads? Hightouch is the easiest way to sync data into the platforms that your business teams rely on. The data you’re looking for is already in your data warehouse and BI tools. Connect your warehouse to Hightouch, paste a SQL query, and use their visual mapper to specify how data should appear in your SaaS systems. No more scripts, just SQL. Supercharge your business teams with customer data using Hightouch for Reverse ETL today. Get started for free at dataengineeringpodcast.com/hightouch. Your host is Tobias Macey and today I’m interviewing Pardhu Gunnam and Mars Lan about Metaphor Data, a platform aiming to be the system of record for your data ecosystem

Interview

Introduction How did you get involved in the area of data management? Can you describe what Metaphor is and the story behind it? On your site it states that you are aiming to be the "system of record" for your data platform. Can you unpack that statement and its implications?

What are the shortcomings in the "data catalog" approach to metadata collection and presentation?

Who are the target end users of Metaphor and what are the pain points for each persona that you are prioritizing?

How has that focus informed your priorities for user experience design and feature development?

Can you describe how the Metaphor platform is architected?

What are the lessons that you learned from your work at DataHub that have informed your work on Metaphor?

There has been a huge amount of focus on the "modern data stack" with an assumption that there is a cloud data warehouse as the central component that all data flows through. How does Metaphor’s design allow for usage in platforms that aren’t dominated

Securing IBM Spectrum Scale with QRadar and IBM Cloud Pak for Security

Cyberattacks are likely to remain a significant risk for the foreseeable future. Attacks on organizations can be external and internal. Investing in technology and processes to prevent these cyberattacks is the highest priority for these organizations. Organizations need well-designed procedures and processes to recover from attacks. The focus of this document is to demonstrate how the IBM® Unified Data Foundation (UDF) infrastructure plays an important role in delivering the persistence storage (PV) to containerized applications, such as IBM Cloud® Pak for Security (CP4S), with IBM Spectrum® Scale Container Native Storage Access (CNSA) that is deployed with IBM Spectrum scale CSI driver and IBM FlashSystem® storage with IBM Block storage driver with CSI driver. Also demonstrated is how this UDF infrastructure can be used as a preferred storage class to create back-end persistent storage for CP4S deployments. We also highlight how the file I/O events are captured in IBM QRadar® and offenses are generated based on predefined rules. After the offenses are generated, we show how the cases are automatically generated in IBM Cloud Pak® for Security by using the IBM QRadar SOAR Plugin, with a manually automated method to log a case in IBM Cloud Pak for Security. This document also describes the processes that are required for the configuration and integration of the components in this solution, such as: Integration of IBM Spectrum Scale with QRadar QRadar integration with IBM Cloud Pak for Security Integration of the IBM QRadar SOAR Plugin to generate automated cases in CP4S. Finally, this document shows the use of IBM Spectrum Scale CNSA and IBM FlashSystem storage that uses IBM block CSI driver to provision persistent volumes for CP4S deployment. All models of IBM FlashSystem family are supported by this document, including: FlashSystem 9100 and 9200 FlashSystem 7200 and FlashSystem 5000 models FlashSystem 5200 IBM SAN Volume Controller All storage that is running IBM Spectrum Virtualize software

Snowflake Essentials: Getting Started with Big Data in the Cloud

Understand the essentials of the Snowflake Database and the overall Snowflake Data Cloud. This book covers how Snowflake’s architecture is different from prior on-premises and cloud databases. The authors also discuss, from an insider perspective, how Snowflake grew so fast to become the largest software IPO of all time. Snowflake was the first database made specifically to be optimized with a cloud architecture. This book helps you get started using Snowflake by first understanding its architecture and what separates it from other database platforms you may have used. You will learn about setting up users and accounts, and then creating database objects. You will know how to load data into Snowflake and query and analyze that data, including unstructured data such as data in XML and JSON formats. You will also learn about Snowflake’s compute platform and the different data sharing options that are available. What YouWill Learn Run analytics in the Snowflake Data Cloud Create users and roles in Snowflake Set up security in Snowflake Set up resource monitors in Snowflake Set up and optimize Snowflake Compute Load, unload, and query structured and unstructured data (JSON, XML) within Snowflake Use Snowflake Data Sharing to share data Set up a Snowflake Data Exchange Use the Snowflake Data Marketplace Who This Book Is For Database professionals or information technology professionals who want to move beyond traditional database technologies by learning Snowflake, a new and massively scalable cloud-based database solution

Apache Pulsar in Action

Deliver lightning fast and reliable messaging for your distributed applications with the flexible and resilient Apache Pulsar platform. In Apache Pulsar in Action you will learn how to: Publish from Apache Pulsar into third-party data repositories and platforms Design and develop Apache Pulsar functions Perform interactive SQL queries against data stored in Apache Pulsar Apache Pulsar in Action is a comprehensive and practical guide to building high-traffic applications with Pulsar. You’ll learn to use this mature and battle-tested platform to deliver extreme levels of speed and durability to your messaging. Apache Pulsar committer David Kjerrumgaard teaches you to apply Pulsar’s seamless scalability through hands-on case studies, including IOT analytics applications and a microservices app based on Pulsar functions. About the Technology Reliable server-to-server messaging is the heart of a distributed application. Apache Pulsar is a flexible real-time messaging platform built to run on Kubernetes and deliver the scalability and resilience required for cloud-based systems. Pulsar supports both streaming and message queuing, and unlike other solutions, it can communicate over multiple protocols including MQTT, AMQP, and Kafka’s binary protocol. About the Book Apache Pulsar in Action teaches you to build scalable streaming messaging systems using Pulsar. You’ll start with a rapid introduction to enterprise messaging and discover the unique benefits of Pulsar. Following crystal-clear explanations and engaging examples, you’ll use the Pulsar Functions framework to develop a microservices-based application. Real-world case studies illustrate how to implement the most important messaging design patterns. What's Inside Publish from Pulsar into third-party data repositories and platforms Design and develop Apache Pulsar functions Create an event-driven food delivery application About the Reader Written for experienced Java developers. No prior knowledge of Pulsar required. About the Author David Kjerrumgaard is a committer on the Apache Pulsar project. He currently serves as a Developer Advocate for StreamNative, where he develops Pulsar best practices and solutions. Quotes Apache Pulsar in Action is able to seamlessly mix the theory and abstract concepts with the clarity of practical step-by-step examples. I’d recommend to anyone! - Matteo Merli, co-creator of Apache Pulsar Gives readers insights into how the ‘magic’ works… Definitely recommended. - Henry Saputra, Splunk A complete, practical, fun-filled book. - Satej Kumar Sahu, Honeywell A definitive guide that will help you scale your applications. - Alessandro Campeis, Vimar The best book to start working with Pulsar. - Emanuele Piccinelli, Empirix

Cloud-Native Microservices with Apache Pulsar: Build Distributed Messaging Microservices

Apply different enterprise integration and processing strategies available with Pulsar, Apache's multi-tenant, high-performance, cloud-native messaging and streaming platform. This book is a comprehensive guide that examines using Pulsar Java libraries to build distributed applications with message-driven architecture. You'll begin with an introduction to Apache Pulsar architecture. The first few chapters build a foundation of message-driven architecture. Next, you'll perform a setup of all the required Pulsar components. The book also covers work with Apache Pulsar client library to build producers and consumers for the discussed patterns. You'll then explore the transformation, filter, resiliency, and tracing capabilities available with Pulsar. Moving forward, the book will discuss best practices when building message schemas and demonstrate integration patterns using microservices. Security is an important aspect of any application;the book will cover authentication and authorization in Apache Pulsar such as Transport Layer Security (TLS), OAuth 2.0, and JSON Web Token (JWT). The final chapters will cover Apache Pulsar deployment in Kubernetes. You'll build microservices and serverless components such as AWS Lambda integrated with Apache Pulsar on Kubernetes. After completing the book, you'll be able to comfortably work with the large set of out-of-the-box integration options offered by Apache Pulsar. What You'll Learn Examine the important Apache Pulsar components Build applications using Apache Pulsar client libraries Use Apache Pulsar effectively with microservices Deploy Apache Pulsar to the cloud Who This Book Is For Cloud architects and software developers who build systems in the cloud-native technologies.

Send us a text Want to be featured as a guest on Making Data Simple? Reach out to us at [[email protected]] and tell us why you should be next.

Abstract Making Data Simple Podcast is hosted by Al Martin, VP, IBM Expert Services Delivery, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun. This week on Making Data Simple, we have Yonatan Geifman, CEO & Co-founder of DECI.ai. We provide a proprietary optimization technology for deep learning practitioners that complements other techniques like pruning, quantization and NAS, enabling you to accelerate deep neural network inference on any hardware while preserving accuracy. Show Notes 1:28 – Yonatan’s experience 4:19 – What did you see in the market that didn’t exist today?  9:30 – How does the process begin? 11:57 – Does it sync in the cloud? 14:50 – What is it that you can’t find in the market? 20:13 – What is the most common hardware? 22:55 – What are your thoughts on bias? 26:08 – What is your definition for AI to be practical? 31:35 – What do you do when the data is not ready? DECI Connect with the Team Producer Kate Brown - LinkedIn. Producer Steve Templeton - LinkedIn. Host Al Martin - LinkedIn and Twitter.  Want to be featured as a guest on Making Data Simple? Reach out to us at [email protected] and tell us why you should be next. The Making Data Simple Podcast is hosted by Al Martin, WW VP Technical Sales, IBM, where we explore trending technologies, business innovation, and leadership ... while keeping it simple & fun.

Efficient MySQL Performance

You'll find several books on basic or advanced MySQL performance, but nothing in between. That's because explaining MySQL performance without addressing its complexity is difficult. This practical book bridges the gap by teaching software engineers mid-level MySQL knowledge beyond the fundamentals, but well shy of deep-level internals required by database administrators (DBAs). Daniel Nichter shows you how to apply the best practices and techniques that directly affect MySQL performance. You'll learn how to improve performance by analyzing query execution, indexing for common SQL clauses and table joins, optimizing data access, and understanding the most important MySQL metrics. You'll also discover how replication, transactions, row locking, and the cloud influenceMySQL performance. Understand why query response time is the North Star of MySQL performance Learn query metrics in detail, including aggregation, reporting, and analysis See how to index effectively for common SQL clauses and table joins Explore the most important server metrics and what they reveal about performance Dive into transactions and row locking to gain deep, actionable insight Achieve remarkable MySQL performance at any scale