talk-data.com talk-data.com

Topic

Cloud Computing

infrastructure saas iaas

499

tagged

Activity Trend

471 peak/qtr
2020-Q1 2026-Q1

Activities

Showing filtered results

Filtering by: O'Reilly Data Engineering Books ×
SAP S/4HANA Systems in Hyperscaler Clouds: Deploying SAP S/4HANA in AWS, Google Cloud, and Azure

This book helps SAP architects and SAP Basis administrators deploy and operate SAP S/4HANA systems on the most common public cloud platforms. Market-leading cloud offerings are covered, including Amazon Web Services, Microsoft Azure, and Google Cloud. You will gain an end-to-end understanding of the initial implementation of SAP S/4HANA systems on those platforms. You will learn how to move away from the big monolithic SAP ERP systems and arrive at an environment with a central SAP S/4HANA system as the digital core surrounded by cloud-native services. The book begins by introducing the core concepts of Hyperscaler cloud platforms that are relevant to SAP. You will learn about the architecture of SAP S/4HANA systems on public cloud platforms, with specific content provided for each of the major platforms. The book simplifies the deployment of SAP S/4HANA systems in public clouds by providing step-by-step instructions and helping you deal with thecomplexity of such a deployment. Content in the book is based on best practices, industry lessons learned, and architectural blueprints, helping you develop deep insights into the operations of SAP S/4HANA systems on public cloud platforms. Reading this book enables you to build and operate your own SAP S/4HANA system in the public cloud with a minimum of effort. What You Will Learn Choose the right Hyperscaler platform for your future SAP S/4HANA workloads Start deploying your first SAP S/4HANA system in the public cloud Avoid typical pitfalls during your implementation Apply and leverage cloud-native services for your SAP S/4HANA system Save costs by choosing the right architecture and build a robust architecture for your most critical SAP systems Meet your business’ criteria for availability and performance by having the right sizing in place Identify further use cases whenoperating SAP S/4HANA in the public cloud Who This Book Is For SAP architects looking for an answer on how to move SAP S/4HANA systems from on-premises into the cloud; those planning to deploy to one of the three major platforms from Amazon Web Services, Microsoft Azure, and Google Cloud Platform; and SAP Basis administrators seeking a detailed and realistic description of how to get started on a migration to the cloud and how to drive that cloud implementation to completion

Observability Engineering

Observability is critical for building, changing, and understanding the software that powers complex modern systems. Teams that adopt observability are much better equipped to ship code swiftly and confidently, identify outliers and aberrant behaviors, and understand the experience of each and every user. This practical book explains the value of observable systems and shows you how to practice observability-driven development. Authors Charity Majors, Liz Fong-Jones, and George Miranda from Honeycomb explain what constitutes good observability, show you how to improve upon what you're doing today, and provide practical dos and don'ts for migrating from legacy tooling, such as metrics, monitoring, and log management. You'll also learn the impact observability has on organizational culture (and vice versa). You'll explore: How the concept of observability applies to managing software at scale The value of practicing observability when delivering complex cloud native applications and systems The impact observability has across the entire software development lifecycle How and why different functional teams use observability with service-level objectives How to instrument your code to help future engineers understand the code you wrote today How to produce quality code for context-aware system debugging and maintenance How data-rich analytics can help you debug elusive issues

Advanced SQL with SAS

This book introduces advanced techniques for using PROC SQL in SAS. If you are a SAS programmer, analyst, or student who has mastered the basics of working with SQL, Advanced SQL with SAS® will help take your skills to the next level. Filled with practical examples with detailed explanations, this book demonstrates how to improve performance and speed for large data sets. Although the book addresses advanced topics, it is designed to progress from the simple and manageable to the complex and sophisticated. In addition to numerous tuning techniques, this book also touches on implicit and explicit pass-throughs, presents alternative SAS grid- and cloud-based processing environments, and compares SAS programming languages and approaches including FedSQL, CAS, DS2, and hash programming. Other topics include: Missing values and data quality with audit trails “Blind spots” like how missing values can affect even the simplest calculations and table joins SAS macro language and SAS macro programs SAS functions Integrity constraints SAS Dictionaries SAS Compute Server

IBM z16 Technical Introduction

This IBM® Redbooks® publication introduces the latest member of the IBM Z® platform that is built with the IBM Telum processor: the IBM z16 server. The IBM Z platform is recognized for its security, resiliency, performance, and scale. It is relied on for mission-critical workloads and as an essential element of hybrid cloud infrastructures. The IBM z16 server adds capabilities and value with innovative technologies that are needed to accelerate the digital transformation journey. This book explains how the IBM z16 server uses innovations and traditional IBM Z strengths to satisfy the growing demand for cloud, analytics, and a more flexible infrastructure. With the IBM z16 servers as the base, applications can run in a trusted, reliable, and secure environment that improves operations and lessens business risk.

CockroachDB: The Definitive Guide

Get the lowdown on CockroachDB, the distributed SQL database built to handle the demands of today's data-driven cloud applications. In this hands-on guide, software developers, architects, and DevOps/SRE teams will learn how to use CockroachDB to create applications that scale elastically and provide seamless delivery for end users while remaining indestructible. Teams will also learn how to migrate existing applications to CockroachDB's performant, cloud native data architecture. If you're familiar with distributed systems, you'll quickly discover the benefits of strong data correctness and consistency guarantees as well as optimizations for delivering ultra low latencies to globally distributed end users. You'll learn how to: Design and build applications for distributed infrastructure, including data modeling and schema design Migrate data into CockroachDB Read and write data and run ACID transactions across distributed infrastructure Plan a CockroachDB deployment for resiliency across single region and multi-region clusters Secure, monitor, and optimize your CockroachDB deployment

Logging in Action

Make log processing a real asset to your organization with powerful and free open source tools. In Logging in Action you will learn how to: Deploy Fluentd and Fluent Bit into traditional on-premises, IoT, hybrid, cloud, and multi-cloud environments, both small and hyperscaled Configure Fluentd and Fluent Bit to solve common log management problems Use Fluentd within Kubernetes and Docker services Connect a custom log source or destination with Fluentd’s extensible plugin framework Logging best practices and common pitfalls Logging in Action is a guide to optimize and organize logging using the CNCF Fluentd and Fluent Bit projects. You’ll use the powerful log management tool Fluentd to solve common log management, and learn how proper log management can improve performance and make management of software and infrastructure solutions easier. Through useful examples like sending log-driven events to Slack, you’ll get hands-on experience applying structure to your unstructured data. About the Technology Don’t fly blind! An effective logging system can help you see and correct problems before they cripple your software. With the Fluentd log management tool, it’s a snap to monitor the behavior and health of your software and infrastructure in real time. Designed to collect and process log data from multiple sources using the industry-standard JSON format, Fluentd delivers a truly unified logging layer across all your systems. About the Book Logging in Action teaches you to record and analyze application and infrastructure data using Fluentd. Using clear, relevant examples, it shows you exactly how to transform raw system data into a unified stream of actionable information. You’ll discover how logging configuration impacts the way your system functions and set up Fluentd to handle data from legacy IT environments, local data centers, and massive Kubernetes-driven distributed systems. You’ll even learn how to implement complex log parsing with RegEx and output events to MongoDB and Slack. What's Inside Capture log events from a wide range of systems and software, including Kubernetes and Docker Connect to custom log sources and destinations Employ Fluentd’s extensible plugin framework Create a custom plugin for niche problems About the Reader For developers, architects, and operations professionals familiar with the basics of monitoring and logging. About the Author Phil Wilkins has spent over 30 years in the software industry. Has worked for small startups through to international brands. Quotes I highly recommend using Logging in Action as a getting-started guide, a refresher, or as a way to optimize your logging journey. - From the Foreword by Anurag Gupta, Fluent maintainer and Cofounder, Calyptia Covers everything you need if you want to implement a logging system using open source technology such as Fluentd and Kubernetes. - Alex Saez, Naranja X A great exploration of the features and capabilities of Fluentd, along with very useful hands-on exercises. - George Thomas, Manhattan Associates A practical holistic guide to integrating logging into your enterprise architecture. - Satej Sahu, Honeywell

Data Engineering with Google Cloud Platform

In 'Data Engineering with Google Cloud Platform', you'll explore how to construct efficient, scalable data pipelines using GCP services. This hands-on guide covers everything from building data warehouses to deploying machine learning pipelines, helping you master GCP's ecosystem. What this Book will help me do Build comprehensive data ingestion and transformation pipelines using BigQuery, Cloud Storage, and Dataflow. Design end-to-end orchestration flows with Airflow and Cloud Composer for automated data processing. Leverage Pub/Sub for building real-time event-driven systems and streaming architectures. Gain skills to design and manage secure data systems with IAM and governance strategies. Prepare for and pass the Professional Data Engineer certification exam to elevate your career. Author(s) Adi Wijaya is a seasoned data engineer with significant experience in Google Cloud Platform products and services. His expertise in building data systems has equipped him with insights into the real-world challenges data engineers face. Adi aims to demystify technical topics and deliver practical knowledge through his writing, helping tech professionals excel. Who is it for? This book is tailored for data engineers and data analysts who want to leverage GCP for building efficient and scalable data systems. Readers should have a beginner-level understanding of topics like data science, Python, and Linux to fully benefit from the material. It is also suitable for individuals preparing for the Google Professional Data Engineer exam. The book is a practical companion for enhancing cloud and data engineering skills.

PostgreSQL 14 Administration Cookbook

PostgreSQL 14 Administration Cookbook provides a hands-on guide to mastering the administration of PostgreSQL 14. With over 175 recipes, this book equips you with practical techniques to manage, secure, and optimize your PostgreSQL databases, ensuring they are robust and high-performing. What this Book will help me do Master managing PostgreSQL databases both on-premises and in the cloud efficiently. Implement effective backup and recovery strategies to secure your data. Leverage the latest features of PostgreSQL 14 to enhance your database workflows. Understand and apply best practices for maintaining high availability and performance. Troubleshoot real-world challenges with guided solutions and expert insights. Author(s) Simon Riggs and Gianni Ciolli are seasoned database experts with years of experience working with PostgreSQL. Simon is a PostgreSQL core team member, contributing his technical knowledge towards building robust database solutions, while Gianni brings a wealth of expertise in database administration and support. Together, they share a passion for making complex database concepts accessible and actionable. Who is it for? This book is for database administrators, data architects, and developers who manage PostgreSQL databases and are looking to deepen their knowledge. It is suitable for professionals with some experience in PostgreSQL who aim to maximize their database's performance and security, as well as for those new to the system seeking a comprehensive start. Readers with an interest in practical, problem-solving approaches to database management will greatly benefit from this cookbook.

Simplify Big Data Analytics with Amazon EMR

Simplify Big Data Analytics with Amazon EMR is a thorough guide to harnessing Amazon's EMR service for big data processing and analytics. From distributed computation pipelines to real-time streaming analytics, this book provides hands-on knowledge and actionable steps for implementing data solutions efficiently. What this Book will help me do Understand the architecture and key components of Amazon EMR and how to deploy it effectively. Learn to configure and manage distributed data processing pipelines using Amazon EMR. Implement security and data governance best practices within the Amazon EMR ecosystem. Master batch ETL and real-time analytics techniques using technologies like Apache Spark. Apply optimization and cost-saving strategies to scalable data solutions. Author(s) Sakti Mishra is a seasoned data professional with extensive expertise in deploying scalable analytics solutions on cloud platforms like AWS. With a background in big data technologies and a passion for teaching, Sakti ensures practical insights accompany every concept. Readers will find his approach thorough, hands-on, and highly informative. Who is it for? This book is perfect for data engineers, data scientists, and other professionals looking to leverage Amazon EMR for scalable analytics. If you are familiar with Python, Scala, or Java and have some exposure to Hadoop or AWS ecosystems, this book will empower you to design and implement robust data pipelines efficiently.

Data Lakehouse in Action

"Data Lakehouse in Action" provides a comprehensive exploration of the Data Lakehouse architecture, a modern solution for scalable and effective large-scale analytics. This book guides you through understanding the principles and components of the architecture, and its implementation using cloud platforms like Azure. Learn the practical techniques for designing robust systems tailored to organizational needs and maturity. What this Book will help me do Understand the evolution and need for modern data architecture patterns like Data Lakehouse. Learn how to design systems for data ingestion, storage, processing, and serving in a Data Lakehouse. Develop best practices for data governance and security in the Data Lakehouse architecture. Discover various analytics workflows enabled by the Data Lakehouse, including real-time and batch approaches. Implement practical Data Lakehouse patterns on a cloud platform, and integrate them with macro-patterns such as Data Mesh. Author(s) Pradeep Menon is a seasoned data architect and engineer with extensive experience implementing data analytics solutions for leading companies. With a penchant for simplifying complex architectures, Pradeep has authored several technical publications and frequently shares his expertise at industry conferences. His hands-on approach and passion for teaching shine through in his practical guides. Who is it for? This book is ideal for data professionals including architects, engineers, and data strategists eager to enhance their knowledge in modern analytics platforms. If you have a basic understanding of data architecture and are curious about implementing systems governed by the Data Lakehouse paradigm, this book is for you. It bridges foundational concepts with advanced practices, making it suitable for learners aiming to contribute effectively to their organization's analytics efforts.

IBM Spectrum Virtualize, IBM FlashSystem, and IBM SAN Volume Controller Security Feature Checklist

IBM Spectrum® Virtualize based storage systems are secure storage platforms that implement various security-related features, in terms of system-level access controls and data-level security features. This document outlines the available security features and options of IBM Spectrum Virtualize based storage systems. It is not intended as a "how to" or best practice document. Instead, it is a checklist of features that can be reviewed by a user security team to aid in the definition of a policy to be followed when implementing IBM FlashSystem®, IBM SAN Volume Controller, and IBM Spectrum Virtualize for Public Cloud. The topics that are discussed in this paper can be broadly split into two categories: System security This type of security encompasses the first three lines of defense that prevent unauthorized access to the system, protect the logical configuration of the storage system, and restrict what actions users can perform. It also ensures visibility and reporting of system level events that can be used by a Security Information and Event Management (SIEM) solution, such as IBM QRadar®. Data security This type of security encompasses the fourth line of defense. It protects the data that is stored on the system against theft, loss, or attack. These data security features include, but are not limited to, encryption of data at rest (EDAR) or IBM Safeguarded Copy (SGC). This document is correct as of IBM Spectrum Virtualize version 8.5.0.

Data Analysis with Python and PySpark

Think big about your data! PySpark brings the powerful Spark big data processing engine to the Python ecosystem, letting you seamlessly scale up your data tasks and create lightning-fast pipelines. In Data Analysis with Python and PySpark you will learn how to: Manage your data as it scales across multiple machines Scale up your data programs with full confidence Read and write data to and from a variety of sources and formats Deal with messy data with PySpark’s data manipulation functionality Discover new data sets and perform exploratory data analysis Build automated data pipelines that transform, summarize, and get insights from data Troubleshoot common PySpark errors Creating reliable long-running jobs Data Analysis with Python and PySpark is your guide to delivering successful Python-driven data projects. Packed with relevant examples and essential techniques, this practical book teaches you to build pipelines for reporting, machine learning, and other data-centric tasks. Quick exercises in every chapter help you practice what you’ve learned, and rapidly start implementing PySpark into your data systems. No previous knowledge of Spark is required. About the Technology The Spark data processing engine is an amazing analytics factory: raw data comes in, insight comes out. PySpark wraps Spark’s core engine with a Python-based API. It helps simplify Spark’s steep learning curve and makes this powerful tool available to anyone working in the Python data ecosystem. About the Book Data Analysis with Python and PySpark helps you solve the daily challenges of data science with PySpark. You’ll learn how to scale your processing capabilities across multiple machines while ingesting data from any source—whether that’s Hadoop clusters, cloud data storage, or local data files. Once you’ve covered the fundamentals, you’ll explore the full versatility of PySpark by building machine learning pipelines, and blending Python, pandas, and PySpark code. What's Inside Organizing your PySpark code Managing your data, no matter the size Scale up your data programs with full confidence Troubleshooting common data pipeline problems Creating reliable long-running jobs About the Reader Written for data scientists and data engineers comfortable with Python. About the Author As a ML director for a data-driven software company, Jonathan Rioux uses PySpark daily. He teaches the software to data scientists, engineers, and data-savvy business analysts. Quotes A clear and in-depth introduction for truly tackling big data with Python. - Gustavo Patino, Oakland University William Beaumont School of Medicine The perfect way to learn how to analyze and master huge datasets. - Gary Bake, Brambles Covers both basic and more advanced topics of PySpark, with a good balance between theory and hands-on. - Philippe Van Bergenl, P² Consulting For beginner to pro, a well-written book to help understand PySpark. - Raushan Kumar Jha, Microsoft

Getting Started with CockroachDB

"Getting Started with CockroachDB" provides an in-depth introduction to CockroachDB, a modern, distributed SQL database designed for cloud-native applications. Through this guide, you'll learn how to deploy, manage, and optimize CockroachDB to build highly reliable, scalable database solutions tailored for demanding and distributed workloads. What this Book will help me do Understand the architecture and design principles of CockroachDB and its fault-tolerant model. Learn how to set up and manage CockroachDB clusters for high availability and automatic scaling. Discover the concepts of data distribution and geo-partitioning to achieve low-latency global interactions. Explore indexing mechanisms in CockroachDB to optimize query performance for fast data retrieval. Master operational strategies, security configuration, and troubleshooting techniques for database management. Author(s) Kishen Das Kondabagilu Rajanna is an experienced software developer and database expert with a deep interest in distributed architectures. With hands-on experience working with CockroachDB and other database technologies, Kishen is passionate about sharing actionable insights with readers. His approach focuses on equipping developers with practical skills to excel in building and managing scalable, efficient database services. Who is it for? This book is ideal for software developers, database administrators, and database engineers seeking to learn CockroachDB for building robust, scalable database systems. If you're new to CockroachDB but possess basic database knowledge, this guide will equip you with the practical skills to leverage CockroachDB's capabilities effectively.

Snowflake Access Control: Mastering the Features for Data Privacy and Regulatory Compliance

Understand the different access control paradigms available in the Snowflake Data Cloud and learn how to implement access control in support of data privacy and compliance with regulations such as GDPR, APPI, CCPA, and SOX. The information in this book will help you and your organization adhere to privacy requirements that are important to consumers and becoming codified in the law. You will learn to protect your valuable data from those who should not see it while making it accessible to the analysts whom you trust to mine the data and create business value for your organization. Snowflake is increasingly the choice for companies looking to move to a data warehousing solution, and security is an increasing concern due to recent high-profile attacks. This book shows how to use Snowflake's wide range of features that support access control, making it easier to protect data access from the data origination point all the way to the presentation and visualization layer.Reading this book helps you embrace the benefits of securing data and provide valuable support for data analysis while also protecting the rights and privacy of the consumers and customers with whom you do business. What You Will Learn Identify data that is sensitive and should be restricted Implement access control in the Snowflake Data Cloud Choose the right access control paradigm for your organization Comply with CCPA, GDPR, SOX, APPI, and similar privacy regulations Take advantage of recognized best practices for role-based access control Prevent upstream and downstream services from subverting your access control Benefit from access control features unique to the Snowflake Data Cloud Who This Book Is For Data engineers, database administrators, and engineering managers who wantto improve their access control model; those whose access control model is not meeting privacy and regulatory requirements; those new to Snowflake who want to benefit from access control features that are unique to the platform; technology leaders in organizations that have just gone public and are now required to conform to SOX reporting requirements

Azure Data Engineer Associate Certification Guide

The "Azure Data Engineer Associate Certification Guide" is a comprehensive resource tailored for professionals preparing for the DP-203 exam. This book not only equips you with the theoretical knowledge needed to pass the certification but also provides hands-on experience with Azure's data engineering services. By the end of the book, you'll feel confident in tackling the certification exam and applying these skills on the job. What this Book will help me do Understand the core concepts of Azure data engineering and their practical applications. Gain proficiency in designing and deploying data storage and processing solutions using Azure services. Develop expertise in securing, monitoring, and optimizing Azure data solutions. Prepare effectively for the DP-203 certification exam with sample questions and practical exercises. Acquire skills to contribute to and excel in real-world Azure Data Engineering projects. Author(s) None Alex is a seasoned data engineer and cloud computing expert with years of experience designing, implementing, and optimizing data solutions. They have spent significant time working with Azure's ecosystem and have crafted this guide to share their insights and best practices. With a passion for teaching and mentoring, they aim to make complex technical concepts accessible to learners. Who is it for? This book caters to data engineering professionals aiming to achieve the DP-203 Azure Data Engineer Associate certification and advance their careers. It's ideal for individuals with fundamental knowledge of cloud-based data solutions and databases, seeking specialized expertise in Azure's data engineering tools. Whether you're upskilling or transitioning to a cloud-native environment, this guide serves as the roadmap to success.

What Is Distributed SQL?

Globally available resources have become the status quo. They're accessible, distributed, and resilient. Our traditional SQL database options haven't kept up. Centralized SQL databases, even those with read replicas in the cloud, put all the transactional load on a central system. The further away that a transaction happens from the user, the more the user experience suffers. If the transactional data powering the application is greatly slowed down, fast-loading web pages mean nothing. In this report, Paul Modderman, Jim Walker, and Charles Custer explain how distributed SQL fits all applications and eliminates complex challenges like sharding from traditional RDBMS systems. You'll learn how distributed SQL databases can reach global scale without introducing the consistency trade-offs found in NoSQL solutions. These databases come to life through cloud computing, while legacy databases simply can't rise to meet the elastic and ubiquitous new paradigm. You'll learn: Key concepts driving this new technology, including the CAP theorem, the Raft consensus algorithm, multiversion concurrency control, and Google Spanner How distributed SQL databases meet enterprise requirements, including management, security, integration, and Everything as a Service (XaaS) The impact that distributed SQL has already made in the telecom, retail, and gaming industries Why serverless computing is an ideal fit for distributed SQL How distributed SQL can help you expand your company's strategic plan

Cassandra: The Definitive Guide, (Revised) Third Edition, 3rd Edition

Imagine what you could do if scalability wasn't a problem. With this hands-on guide, you'll learn how the Cassandra database management system handles hundreds of terabytes of data while remaining highly available across multiple data centers. This revised third edition--updated for Cassandra 4.0 and new developments in the Cassandra ecosystem, including deployments in Kubernetes with K8ssandra--provides technical details and practical examples to help you put this database to work in a production environment. Authors Jeff Carpenter and Eben Hewitt demonstrate the advantages of Cassandra's nonrelational design, with special attention to data modeling. Developers, DBAs, and application architects looking to solve a database scaling issue or future-proof an application will learn how to harness Cassandra's speed and flexibility. Understand Cassandra's distributed and decentralized structure Use the Cassandra Query Language (CQL) and cqlsh (the CQL shell) Create a working data model and compare it with an equivalent relational model Design and develop applications using client drivers Explore cluster topology and learn how nodes exchange data Maintain a high level of performance in your cluster Deploy Cassandra onsite, in the cloud, or with Docker and Kubernetes Integrate Cassandra with Spark, Kafka, Elasticsearch, Solr, and Lucene

Installing and Configuring IBM Db2 AI for IBM z/OS v1.4.0

Artificial intelligence (AI) enables computers and machines to mimic the perception, learning, problem-solving, and decision-making capabilities of the human mind. AI development is made possible by the availability of large amounts of data and the corresponding development and wide availability of computer systems that can process all that data faster and more accurately than humans can. What happens if you infuse AI with a world-class database management system, such as IBM Db2®? IBM® has done just that with Db2 AI for z/OS (Db2ZAI). Db2ZAI is built to infuse AI and data science to assist businesses in the use of AI to develop applications more easily. With Db2ZAI, the following benefits are realized: Data science functionality Better built applications Improved database performance (and DBA's time and efforts are saved) through simplification and automation of error reporting and routine tasks Machine learning (ML) optimizer to improve query access paths and reduce the need for manual tuning and query optimization Integrated data access that makes data available from various vendors including private cloud providers. This IBM Redpaper® publication helps to simplify your installation by tailoring and configuration of Db2 AI for z/OS®. It was written for system programmers, system administrators, and database administrators.

Data Engineering with AWS

Discover how to effectively build and manage data engineering pipelines using AWS with "Data Engineering with AWS". In this hands-on book, you'll explore the foundational principles of data engineering, learn to architect data pipelines, and work with essential AWS services to process, transform, and analyze data. What this Book will help me do Understand and implement modern data engineering pipelines with AWS services. Gain proficiency in automating data ingestion and transformation using Amazon tools. Perform efficient data queries and analysis leveraging Amazon Athena and Redshift. Create insightful data visualizations using Amazon QuickSight. Apply machine learning techniques to enhance data engineering processes. Author(s) None Eagar, a Senior Data Architect with over twenty-five years of experience, specializes in modern data architectures and cloud solutions. With a rich background in applying data engineering to real-world problems, None Eagar shares expertise in a clear and approachable way for readers. Who is it for? This book is perfect for data engineers and data architects aiming to grow their expertise in AWS-based solutions. It's also geared towards beginners in data engineering wanting to adopt the best practices. Those with a basic understanding of big data and cloud platforms will find it particularly valuable, but prior AWS experience is not required.

Optimizing Databricks Workloads

Unlock the full potential of Apache Spark on the Databricks platform with "Optimizing Databricks Workloads". This book equips you with must-know techniques to effectively configure, manage, and optimize big data processing pipelines. Dive into real-world scenarios and learn practical approaches to reduce costs and improve performance in your data engineering processes. What this Book will help me do Understand and apply optimization techniques for Databricks workloads. Choose the right cluster configurations to maximize efficiency and minimize costs. Leverage Delta Lake for performance-boosted data processing and optimization. Develop skills for managing Spark DataFrames and core functionalities in Databricks. Gain insights into real-world scenarios to effectively improve workload performance. Author(s) Anirudh Kala and the co-authors are experienced practitioners in the fields of data engineering and analytics. With years of professional expertise in leveraging Apache Spark and Databricks, they bring real-world insight into performance optimization. Their approach blends practical instruction with actionable strategies, making this book an essential guide for data engineers aiming to excel in this domain. Who is it for? This book is tailored for data engineers, data scientists, and cloud architects looking to elevate their skills in managing Databricks workloads. Ideal for readers with basic knowledge of Spark and Databricks, it helps them get hands-on with optimization techniques. If you are aiming to enhance your Spark-based data processing systems, this book offers the guidance you need.