talk-data.com talk-data.com

Topic

Data Management

data_governance data_quality metadata_management

1097

tagged

Activity Trend

88 peak/qtr
2020-Q1 2026-Q1

Activities

1097 activities · Newest first

Summary

Search is a common requirement for applications of all varieties. Elasticsearch was built to make it easy to include search functionality in projects built in any language. From that foundation, the rest of the Elastic Stack has been built, expanding to many more use cases in the proces. In this episode Philipp Krenn describes the various pieces of the stack, how they fit together, and how you can use them in your infrastructure to store, search, and analyze your data.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Philipp Krenn about the Elastic Stack and the ways that you can use it in your systems

Interview

Introduction How did you get involved in the area of data management? The Elasticsearch product has been around for a long time and is widely known, but can you give a brief overview of the other components that make up the Elastic Stack and how they work together? Beyond the common pattern of using Elasticsearch as a search engine connected to a web application, what are some of the other use cases for the various pieces of the stack? What are the common scaling bottlenecks that users should be aware of when they are dealing with large volumes of data? What do you consider to be the biggest competition to the Elastic Stack as you expand the capabilities and target usage patterns? What are the biggest challenges that you are tackling in the Elastic stack, technical or otherwise? What are the biggest challenges facing Elastic as a company in the near to medium term? Open source as a business model: https://www.elastic.co/blog/doubling-down-on-open?utm_source=rss&utm_medium=rss What is the vision for Elastic and the Elastic Stack going forward and what new features or functionality can we look forward to?

Contact Info

@xeraa on Twitter xeraa on GitHub Website Email

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Elastic Vienna – Capital of Austria What Is Developer Advocacy? NoSQL MongoDB Elasticsearch Cassandra Neo4J Hazelcast Apache Lucene Logstash Kibana Beats X-Pack ELK Stack Metrics APM (Application Performance Monitoring) GeoJSON Split Brain Elasticsearch Ingest Nodes PacketBeat Elastic Cloud Elasticon Kibana Canvas SwiftType

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

As software lifecycles move faster, the database needs to be able to keep up. Practices such as version controlled migration scripts and iterative schema evolution provide the necessary mechanisms to ensure that your data layer is as agile as your application. Pramod Sadalage saw the need for these capabilities during the early days of the introduction of modern development practices and co-authored a book to codify a large number of patterns to aid practitioners, and in this episode he reflects on the current state of affairs and how things have changed over the past 12 years.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Pramod Sadalage about refactoring databases and integrating database design into an iterative development workflow

Interview

Introduction How did you get involved in the area of data management? You first co-authored Refactoring Databases in 2006. What was the state of software and database system development at the time and why did you find it necessary to write a book on this subject? What are the characteristics of a database that make them more difficult to manage in an iterative context? How does the practice of refactoring in the context of a database compare to that of software? How has the prevalence of data abstractions such as ORMs or ODMs impacted the practice of schema design and evolution? Is there a difference in strategy when refactoring the data layer of a system when using a non-relational storage system? How has the DevOps movement and the increased focus on automation affected the state of the art in database versioning and evolution? What have you found to be the most problematic aspects of databases when trying to evolve the functionality of a system? Looking back over the past 12 years, what has changed in the areas of database design and evolution?

How has the landscape of tooling for managing and applying database versioning changed since you first wrote Refactoring Databases? What do you see as the biggest challenges facing us over the next few years?

Contact Info

Website pramodsadalage on GitHub @pramodsadalage on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Database Refactoring

Website Book

Thoughtworks Martin Fowler Agile Software Development XP (Extreme Programming) Continuous Integration

The Book Wikipedia

Test First Development DDL (Data Definition Language) DML (Data Modification Language) DevOps Flyway Liquibase DBMaintain Hibernate SQLAlchemy ORM (Object Relational Mapper) ODM (Object Document Mapper) NoSQL Document Database MongoDB OrientDB CouchBase CassandraDB Neo4j ArangoDB Unit Testing Integration Testing OLAP (On-Line Analytical Processing) OLTP (On-Line Transaction Processing) Data Warehouse Docker QA==Quality Assurance HIPAA (Health Insurance Portability and Accountability Act) PCI DSS (Payment Card Industry Data Security Standard) Polyglot Persistence Toplink Java ORM Ruby on Rails ActiveRecord Gem

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

Data is an increasingly sought after raw material for business in the modern economy. One of the factors driving this trend is the increase in applications for machine learning and AI which require large quantities of information to work from. As the demand for data becomes more widespread the market for providing it will begin transform the ways that information is collected and shared among and between organizations. With his experience as a chair for the O’Reilly AI conference and an investor for data driven businesses Roger Chen is well versed in the challenges and solutions being facing us. In this episode he shares his perspective on the ways that businesses can work together to create shared data resources that will allow them to reduce the redundancy of their foundational data and improve their overall effectiveness in collecting useful training sets for their particular products.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers A few announcements:

The O’Reilly AI Conference is also coming up. Happening April 29th to the 30th in New York it will give you a solid understanding of the latest breakthroughs and best practices in AI for business. Go to dataengineeringpodcast.com/aicon-new-york to register and save 20% If you work with data or want to learn more about how the projects you have heard about on the show get used in the real world then join me at the Open Data Science Conference in Boston from May 1st through the 4th. It has become one of the largest events for data scientists, data engineers, and data driven businesses to get together and learn how to be more effective. To save 60% off your tickets go to dataengineeringpodcast.com/odsc-east-2018 and register.

Your host is Tobias Macey and today I’m interviewing Roger Chen about data liquidity and its impact on our future economies

Interview

Introduction How did you get involved in the area of data management? You wrote an essay discussing how the increasing usage of machine learning and artificial intelligence applications will result in a demand for data that necessitates what you refer to as ‘Data Liquidity’. Can you explain what you mean by that term? What are some examples of the types of data that you envision as being foundational to multiple organizations and problem domains? Can you provide some examples of the structures that could be created to facilitate data sharing across organizational boundaries? Many companies view their data as a strategic asset and are therefore loathe to provide access to other individuals or organizations. What encouragement can you provide that would convince them to externalize any of that information? What kinds of storage and transmission infrastructure and tooling are necessary to allow for wider distribution of, and collaboration on, data assets? What do you view as being the privacy implications from creating and sharing these larger pools of data inventory? What do you view as some of the technical challenges associated with identifying and separating shared data from those that are specific to the business model of the organization? With broader access to large data sets, how do you anticipate that impacting the types of businesses or products that are possible for smaller organizations?

Cont

Summary

One of the sources of data that often gets overlooked is the systems that we use to run our businesses. This data is not used to directly provide value to customers or understand the functioning of the business, but it is still a critical component of a successful system. Sam Stokes is an engineer at Honeycomb where he helps to build a platform that is able to capture all of the events and context that occur in our production environments and use them to answer all of your questions about what is happening in your system right now. In this episode he discusses the challenges inherent in capturing and analyzing event data, the tools that his team is using to make it possible, and how this type of knowledge can be used to improve your critical infrastructure.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers A few announcements:

There is still time to register for the O’Reilly Strata Conference in San Jose, CA March 5th-8th. Use the link dataengineeringpodcast.com/strata-san-jose to register and save 20% The O’Reilly AI Conference is also coming up. Happening April 29th to the 30th in New York it will give you a solid understanding of the latest breakthroughs and best practices in AI for business. Go to dataengineeringpodcast.com/aicon-new-york to register and save 20% If you work with data or want to learn more about how the projects you have heard about on the show get used in the real world then join me at the Open Data Science Conference in Boston from May 1st through the 4th. It has become one of the largest events for data scientists, data engineers, and data driven businesses to get together and learn how to be more effective. To save 60% off your tickets go to dataengineeringpodcast.com/odsc-east-2018 and register.

Your host is Tobias Macey and today I’m interviewing Sam Stokes about his work at Honeycomb, a modern platform for observability of software systems

Interview

Introduction How did you get involved in the area of data management? What is Honeycomb and how did you get started at the company? Can you start by giving an overview of your data infrastructure and the path that an event takes from ingest to graph? What are the characteristics of the event data that you are dealing with and what challenges does it pose in terms of processing it at scale? In addition to the complexities of ingesting and storing data with a high degree of cardinality, being able to quickly analyze it for customer reporting poses a number of difficulties. Can you explain how you have built your systems to facilitate highly interactive usage patterns? A high degree of visibility into a running system is desirable for developers and systems adminstrators, but they are not always willing or able to invest the effort to fully instrument the code or servers that they want to track. What have you found to be the most difficult aspects of data collection, and do you have any tooling to simplify the implementation for user? How does Honeycomb compare to other systems that are available off the shelf or as a service, and when is it not the right tool? What have been some of the most challenging aspects of building, scaling, and marketing Honeycomb?

Contact Info

@samstokes on Twitter Blog samstokes on GitHub

Parting Question

A Practical Guide for Informationists

A Practical Guide for Informationists: Supporting Research and Clinical Practice guides new informationists to a successful career, giving them a pathway to this savvier, more technically advanced, domain-focused role in modern day information centers and libraries. The book's broad scope serves as an invaluable toolkit for healthcare professionals, researchers and graduate students in information management, library and information science, data management, informatics, etc. Furthermore, it is also ideal as a textbook for courses in medical reference services/medical informatics in MLIS programs. Offer examples (e.g. case studies) of ways of delivering information services to end users Includes recommendations, evidence and worksheets/take-aways/templates to be repurposed and adapted by the reader Aimed at the broad area of healthcare and research libraries

Summary

The responsibilities of a data scientist and a data engineer often overlap and occasionally come to cross purposes. Despite these challenges it is possible for the two roles to work together effectively and produce valuable business outcomes. In this episode Will McGinnis discusses the opinions that he has gained from experience on how data teams can play to their strengths to the benefit of all.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers A few announcements:

There is still time to register for the O’Reilly Strata Conference in San Jose, CA March 5th-8th. Use the link dataengineeringpodcast.com/strata-san-jose to register and save 20% The O’Reilly AI Conference is also coming up. Happening April 29th to the 30th in New York it will give you a solid understanding of the latest breakthroughs and best practices in AI for business. Go to dataengineeringpodcast.com/aicon-new-york to register and save 20% If you work with data or want to learn more about how the projects you have heard about on the show get used in the real world then join me at the Open Data Science Conference in Boston from May 1st through the 4th. It has become one of the largest events for data scientists, data engineers, and data driven businesses to get together and learn how to be more effective. To save 60% off your tickets go to dataengineeringpodcast.com/odsc-east-2018 and register.

Your host is Tobias Macey and today I’m interviewing Will McGinnis about the relationship and boundaries between data engineers and data scientists

Interview

Introduction How did you get involved in the area of data management? The terms “Data Scientist” and “Data Engineer” are fluid and seem to have a different meaning for everyone who uses them. Can you share how you define those terms? What parallels do you see between the relationships of data engineers and data scientists and those of developers and systems administrators? Is there a particular size of organization or problem that serves as a tipping point for when you start to separate the two roles into the responsibilities of more than one person or team? What are the benefits of splitting the responsibilities of data engineering and data science?

What are the disadvantages?

What are some strategies to ensure successful interaction between data engineers and data scientists? How do you view these roles evolving as they become more prevalent across companies and industries?

Contact Info

Website wdm0006 on GitHub @willmcginniser on Twitter LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Blog Post: Tendencies of Data Engineers and Data Scientists Predikto Categorical Encoders DevOps SciKit-Learn

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

As communications between machines become more commonplace the need to store the generated data in a time-oriented manner increases. The market for timeseries data stores has many contenders, but they are not all built to solve the same problems or to scale in the same manner. In this episode the founders of TimescaleDB, Ajay Kulkarni and Mike Freedman, discuss how Timescale was started, the problems that it solves, and how it works under the covers. They also explain how you can start using it in your infrastructure and their plans for the future.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Ajay Kulkarni and Mike Freedman about Timescale DB, a scalable timeseries database built on top of PostGreSQL

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Timescale is and how the project got started? The landscape of time series databases is extensive and oftentimes difficult to navigate. How do you view your position in that market and what makes Timescale stand out from the other options? In your blog post that explains the design decisions for how Timescale is implemented you call out the fact that the inserted data is largely append only which simplifies the index management. How does Timescale handle out of order timestamps, such as from infrequently connected sensors or mobile devices? How is Timescale implemented and how has the internal architecture evolved since you first started working on it?

What impact has the 10.0 release of PostGreSQL had on the design of the project? Is timescale compatible with systems such as Amazon RDS or Google Cloud SQL?

For someone who wants to start using Timescale what is involved in deploying and maintaining it? What are the axes for scaling Timescale and what are the points where that scalability breaks down?

Are you aware of anyone who has deployed it on top of Citus for scaling horizontally across instances?

What has been the most challenging aspect of building and marketing Timescale? When is Timescale the wrong tool to use for time series data? One of the use cases that you call out on your website is for systems metrics and monitoring. How does Timescale fit into that ecosystem and can it be used along with tools such as Graphite or Prometheus? What are some of the most interesting uses of Timescale that you have seen? Which came first, Timescale the business or Timescale the database, and what is your strategy for ensuring that the open source project and the company around it both maintain their health? What features or improvements do you have planned for future releases of Timescale?

Contact Info

Ajay

LinkedIn @acoustik on Twitter Timescale Blog

Mike

Website LinkedIn @michaelfreedman on Twitter Timescale Blog

Timescale

Website @timescaledb on Twitter GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Timescale PostGreSQL Citus Timescale Design Blog Post MIT NYU Stanford SDN Princeton Machine Data Timeseries Data List of Timeseries Databases NoSQL Online Transaction Processing (OLTP) Object Relational Mapper (ORM) Grafana Tableau Kafka When Boring Is Awesome PostGreSQL RDS Google Cloud SQL Azure DB Docker Continuous Aggregates Streaming Replication PGPool II Kubernetes Docker Swarm Citus Data

Website Data Engineering Podcast Interview

Database Indexing B-Tree Index GIN Index GIST Index STE Energy Redis Graphite Prometheus pg_prometheus OpenMetrics Standard Proposal Timescale Parallel Copy Hadoop PostGIS KDB+ DevOps Internet of Things MongoDB Elastic DataBricks Apache Spark Confluent New Enterprise Associates MapD Benchmark Ventures Hortonworks 2σ Ventures CockroachDB Cloudflare EMC Timescale Blog: Why SQL is beating NoSQL, and what this means for the future of data

The intro and outro music is from a href="http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug?utm_source=rss&utm_medium=rss" target="_blank"…

Summary

One of the critical components for modern data infrastructure is a scalable and reliable messaging system. Publish-subscribe systems have been popular for many years, and recently stream oriented systems such as Kafka have been rising in prominence. This week Rajan Dhabalia and Matteo Merli discuss the work they have done on Pulsar, which supports both options, in addition to being globally scalable and fast. They explain how Pulsar is architected, how to scale it, and how it fits into your existing infrastructure.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers A few announcements:

There is still time to register for the O’Reilly Strata Conference in San Jose, CA March 5th-8th. Use the link dataengineeringpodcast.com/strata-san-jose to register and save 20% The O’Reilly AI Conference is also coming up. Happening April 29th to the 30th in New York it will give you a solid understanding of the latest breakthroughs and best practices in AI for business. Go to dataengineeringpodcast.com/aicon-new-york to register and save 20% If you work with data or want to learn more about how the projects you have heard about on the show get used in the real world then join me at the Open Data Science Conference in Boston from May 1st through the 4th. It has become one of the largest events for data scientists, data engineers, and data driven businesses to get together and learn how to be more effective. To save 60% off your tickets go to dataengineeringpodcast.com/odsc-east-2018 and register.

Your host is Tobias Macey and today I’m interviewing Rajan Dhabalia and Matteo Merli about Pulsar, a distributed open source pub-sub messaging system

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Pulsar is and what the original inspiration for the project was? What have been some of the most challenging aspects of building and promoting Pulsar? For someone who wants to run Pulsar, what are the infrastructure and network requirements that they should be considering and what is involved in deploying the various components? What are the scaling factors for Pulsar and what aspects of deployment and administration should users pay special attention to? What projects or services do you consider to be competitors to Pulsar and what makes it stand out in comparison? The documentation mentions that there is an API layer that provides drop-in compatibility with Kafka. Does that extend to also supporting some of the plugins that have developed on top of Kafka? One of the popular aspects of Kafka is the persistence of the message log, so I’m curious how Pulsar manages long-term storage and reprocessing of messages that have already been acknowledged? When is Pulsar the wrong tool to use? What are some of the improvements or new features that you have planned for the future of Pulsar?

Contact Info

Matteo

merlimat on GitHub @merlimat on Twitter

Rajan

@dhabaliaraj on Twitter rhabalia on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Pulsar Publish-Subscribe Yahoo Streamlio ActiveMQ Kafka Bookkeeper SLA (Service Level Agreement) Write-Ahead Log Ansible Zookeeper Pulsar Deployme

Summary Sharing data across multiple computers, particularly when it is large and changing, is a difficult problem to solve. In order to provide a simpler way to distribute and version data sets among collaborators the Dat Project was created. In this episode Danielle Robinson and Joe Hand explain how the project got started, how it functions, and some of the many ways that it can be used. They also explain the plans that the team has for upcoming features and uses that you can watch out for in future releases.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers A few announcements:

There is still time to register for the O’Reilly Strata Conference in San Jose, CA March 5th-8th. Use the link dataengineeringpodcast.com/strata-san-jose to register and save 20% The O’Reilly AI Conference is also coming up. Happening April 29th to the 30th in New York it will give you a solid understanding of the latest breakthroughs and best practices in AI for business. Go to dataengineeringpodcast.com/aicon-new-york to register and save 20% If you work with data or want to learn more about how the projects you have heard about on the show get used in the real world then join me at the Open Data Science Conference in Boston from May 1st through the 4th. It has become one of the largest events for data scientists, data engineers, and data driven businesses to get together and learn how to be more effective. To save 60% off your tickets go to dataengineeringpodcast.com/odsc-east-2018 and register.

Your host is Tobias Macey and today I’m interviewing Danielle Robinson and Joe Hand about Dat Project, a distributed data sharing protocol for building applications of the future

Interview

Introduction How did you get involved in the area of data management? What is the Dat project and how did it get started? How have the grants to the Dat project influenced the focus and pace of development that was possible?

Now that you have established a non-profit organization around Dat, what are your plans to support future sustainability and growth of the project?

Can you explain how the Dat protocol is designed and how it has evolved since it was first started? How does Dat manage conflict resolution and data versioning when replicating between multiple machines? One of the primary use cases that is mentioned in the documentation and website for Dat is that of hosting and distributing open data sets, with a focus on researchers. How does Dat help with that effort and what improvements does it offer over other existing solutions? One of the difficult aspects of building a peer-to-peer protocol is that of establishing a critical mass of users to add value to the network. How have you approached that effort and how much progress do you feel that you have made? How does the peer-to-peer nature of the platform affect the architectural patterns for people wanting to build applications that are delivered via dat, vs the common three-tier architecture oriented around persistent databases? What mechanisms are available for content discovery, given the fact that Dat URLs are private and unguessable by default? For someone who wants to start using Dat today, what is involved in creating and/or consuming content that is available on the network? What have been the most challenging aspects of building and promoting Dat? What are some of the most interesting or inspiring uses of the Dat protocol that you are aware of?

Contact Info

Dat

datproject.org Email @dat_project on Twitter Dat Chat

Danielle

Email @daniellecrobins

Joe

Email @joeahand on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Dat Project Code For Science and Society Neuroscience Cell Biology OpenCon Mozilla Science Open Education Open Access Open Data Fortune 500 Data Warehouse Knight Foundation Alfred P. Sloan Foundation Gordon and Betty Moore Foundation Dat In The Lab Dat in the Lab blog posts California Digital Library IPFS Dat on Open Collective – COMING SOON! ScienceFair Stencila eLIFE Git BitTorrent Dat Whitepaper Merkle Tree Certificate Transparency Dat Protocol Working Group Dat Multiwriter Development – Hyperdb Beaker Browser WebRTC IndexedDB Rust C Keybase PGP Wire Zenodo Dryad Data Sharing Dataverse RSync FTP Globus Fritter Fritter Demo Rotonde how to Joe’s website on Dat Dat Tutorial Data Rescue – NYTimes Coverage Data.gov Libraries+ Network UC Conservation Genomics Consortium Fair Data principles hypervision hypervision in browser

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Click here to read the unedited transcript… Tobias Macey 00:13…

Summary

The majority of the conversation around machine learning and big data pertains to well-structured and cleaned data sets. Unfortunately, that is just a small percentage of the information that is available, so the rest of the sources of knowledge in a company are housed in so-called “Dark Data” sets. In this episode Alex Ratner explains how the work that he and his fellow researchers are doing on Snorkel can be used to extract value by leveraging labeling functions written by domain experts to generate training sets for machine learning models. He also explains how this approach can be used to democratize machine learning by making it feasible for organizations with smaller data sets than those required by most tooling.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Alex Ratner about Snorkel and Dark Data

Interview

Introduction How did you get involved in the area of data management? Can you start by sharing your definition of dark data and how Snorkel helps to extract value from it? What are some of the most challenging aspects of building labelling functions and what tools or techniques are available to verify their validity and effectiveness in producing accurate outcomes? Can you provide some examples of how Snorkel can be used to build useful models in production contexts for companies or problem domains where data collection is difficult to do at large scale? For someone who wants to use Snorkel, what are the steps involved in processing the source data and what tooling or systems are necessary to analyse the outputs for generating usable insights? How is Snorkel architected and how has the design evolved over its lifetime? What are some situations where Snorkel would be poorly suited for use? What are some of the most interesting applications of Snorkel that you are aware of? What are some of the other projects that you and your group are working on that interact with Snorkel? What are some of the features or improvements that you have planned for future releases of Snorkel?

Contact Info

Website ajratner on Github @ajratner on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Stanford DAWN HazyResearch Snorkel Christopher Ré Dark Data DARPA Memex Training Data FDA ImageNet National Library of Medicine Empirical Studies of Conflict Data Augmentation PyTorch Tensorflow Generative Model Discriminative Model Weak Supervision

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Analyzing Baseball Data with R

With its flexible capabilities and open-source platform, R has become a major tool for analyzing detailed, high-quality baseball data. Analyzing Baseball Data with R provides an introduction to R for sabermetricians, baseball enthusiasts, and students interested in exploring the rich sources of baseball data. It equips readers with the necessary skills and software tools to perform all of the analysis steps, from gathering the datasets and entering them in a convenient format to visualizing the data via graphs to performing a statistical analysis. The authors first present an overview of publicly available baseball datasets and a gentle introduction to the type of data structures and exploratory and data management capabilities of R. They also cover the traditional graphics functions in the base package and introduce more sophisticated graphical displays available through the lattice and ggplot2 packages. Much of the book illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs expectancy, career trajectories, simulation of games and seasons, patterns of streaky behavior of players, and fielding measures. Each chapter contains exercises that encourage readers to perform their own analyses using R. All of the datasets and R code used in the text are available online. This book helps readers answer questions about baseball teams, players, and strategy using large, publically available datasets. It offers detailed instructions on downloading the datasets and putting them into formats that simplify data exploration and analysis. Through the book’s various examples, readers will learn about modern sabermetrics and be able to conduct their own baseball analyses.

Summary

As we scale our systems to handle larger volumes of data, geographically distributed users, and varied data sources the requirement to distribute the computational resources for managing that information becomes more pronounced. In order to ensure that all of the distributed nodes in our systems agree with each other we need to build mechanisms to properly handle replication of data and conflict resolution. In this episode Christopher Meiklejohn discusses the research he is doing with Conflict-Free Replicated Data Types (CRDTs) and how they fit in with existing methods for sharing and sharding data. He also shares resources for systems that leverage CRDTs, how you can incorporate them into your systems, and when they might not be the right solution. It is a fascinating and informative treatment of a topic that is becoming increasingly relevant in a data driven world.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Christopher Meiklejohn about establishing consensus in distributed systems

Interview

Introduction How did you get involved in the area of data management? You have dealt with CRDTs with your work in industry, as well as in your research. Can you start by explaining what a CRDT is, how you first began working with them, and some of their current manifestations? Other than CRDTs, what are some of the methods for establishing consensus across nodes in a system and how does increased scale affect their relative effectiveness? One of the projects that you have been involved in which relies on CRDTs is LASP. Can you describe what LASP is and what your role in the project has been? Can you provide examples of some production systems or available tools that are leveraging CRDTs? If someone wants to take advantage of CRDTs in their applications or data processing, what are the available off-the-shelf options, and what would be involved in implementing custom data types? What areas of research are you most excited about right now? Given that you are currently working on your PhD, do you have any thoughts on the projects or industries that you would like to be involved in once your degree is completed?

Contact Info

Website cmeiklejohn on GitHub Google Scholar Citations

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Basho Riak Syncfree LASP CRDT Mesosphere CAP Theorem Cassandra DynamoDB Bayou System (Xerox PARC) Multivalue Register Paxos RAFT Byzantine Fault Tolerance Two Phase Commit Spanner ReactiveX Tensorflow Erlang Docker Kubernetes Erleans Orleans Atom Editor Automerge Martin Klepman Akka Delta CRDTs Antidote DB Kops Eventual Consistency Causal Consistency ACID Transactions Joe Hellerstein

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

PostGreSQL has become one of the most popular and widely used databases, and for good reason. The level of extensibility that it supports has allowed it to be used in virtually every environment. At Citus Data they have built an extension to support running it in a distributed fashion across large volumes of data with parallelized queries for improved performance. In this episode Ozgun Erdogan, the CTO of Citus, and Craig Kerstiens, Citus Product Manager, discuss how the company got started, the work that they are doing to scale out PostGreSQL, and how you can start using it in your environment.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Ozgun Erdogan and Craig Kerstiens about Citus, worry free PostGreSQL

Interview

Introduction How did you get involved in the area of data management? Can you describe what Citus is and how the project got started? Why did you start with Postgres vs. building something from the ground up? What was the reasoning behind converting Citus from a fork of PostGres to being an extension and releasing an open source version? How well does Citus work with other Postgres extensions, such as PostGIS, PipelineDB, or Timescale? How does Citus compare to options such as PostGres-XL or the Postgres compatible Aurora service from Amazon? How does Citus operate under the covers to enable clustering and replication across multiple hosts? What are the failure modes of Citus and how does it handle loss of nodes in the cluster? For someone who is interested in migrating to Citus, what is involved in getting it deployed and moving the data out of an existing system? How do the different options for leveraging Citus compare to each other and how do you determine which features to release or withhold in the open source version? Are there any use cases that Citus enables which would be impractical to attempt in native Postgres? What have been some of the most challenging aspects of building the Citus extension? What are the situations where you would advise against using Citus? What are some of the most interesting or impressive uses of Citus that you have seen? What are some of the features that you have planned for future releases of Citus?

Contact Info

Citus Data

citusdata.com @citusdata on Twitter citusdata on GitHub

Craig

Email Website @craigkerstiens on Twitter

Ozgun

Email ozgune on GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Citus Data PostGreSQL NoSQL Timescale SQL blog post PostGIS PostGreSQL Graph Database JSONB Data Type PipelineDB Timescale PostGres-XL Aurora PostGres Amazon RDS Streaming Replication CitusMX CTE (Common Table Expression) HipMunk Citus Sharding Blog Post Wal-e Wal-g Heap Analytics HyperLogLog C-Store

The intro and outro musi

Summary

Data oriented applications that need to operate on large, fast-moving sterams of information can be difficult to build and scale due to the need to manage their state. In this episode Sean T. Allen, VP of engineering for Wallaroo Labs, explains how Wallaroo was designed and built to reduce the cognitive overhead of building this style of project. He explains the motivation for building Wallaroo, how it is implemented, and how you can start using it today.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Sean T. Allen about Wallaroo, a framework for building and operating stateful data applications at scale

Interview

Introduction How did you get involved in the area of data engineering? What is Wallaroo and how did the project get started? What is the Pony language, and what features does it have that make it well suited for the problem area that you are focusing on? Why did you choose to focus first on Python as the language for interacting with Wallaroo and how is that integration implemented? How is Wallaroo architected internally to allow for distributed state management?

Is the state persistent, or is it only maintained long enough to complete the desired computation? If so, what format do you use for long term storage of the data?

What have been the most challenging aspects of building the Wallaroo platform? Which axes of the CAP theorem have you optimized for? For someone who wants to build an application on top of Wallaroo, what is involved in getting started? Once you have a working application, what resources are necessary for deploying to production and what are the scaling factors?

What are the failure modes that users of Wallaroo need to account for in their application or infrastructure?

What are some situations or problem types for which Wallaroo would be the wrong choice? What are some of the most interesting or unexpected uses of Wallaroo that you have seen? What do you have planned for the future of Wallaroo?

Contact Info

IRC Mailing List Wallaroo Labs Twitter Email Personal Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Wallaroo Labs Storm Applied Apache Storm Risk Analysis Pony Language Erlang Akka Tail Latency High Performance Computing Python Apache Software Foundation Beyond Distributed Transactions: An Apostate’s View Consistent Hashing Jepsen Lineage Driven Fault Injection Chaos Engineering QCon 2016 Talk Codemesh in London: How did I get here? CAP Theorem CRDT Sync Free Project Basho Wallaroo on GitHub Docker Puppet Chef Ansible SaltStack Kafka TCP Dask Data Engineering Episode About Dask Beowulf Cluster Redis Flink Haskell

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

In this podcast, Paul Ballew(@Ford) talks about best practices when running a data science organization spanned across multiple continents. He shared the importance of being Smart, Nice, and Inquisitive in creating tomorrow's workforce today. He sheds some light on the importance of appreciating culture when defining forward-looking policies. He also builds a case for a non-native group and discusses ways to implement data science as a central organization(with no hub-spoke model). This podcast is great for future data science leaders leading organizations with a broad consumer base and multiple geo-political silos.

Timeline: 0:29 Paul's journey. 5:10 Paul's current role. 8:10 Insurance and data analytics. 13:00 Who will own the insurance in the time of automation. 18:22 Recruiting models in technologies. 21:54 Embracing technological change. 25:03 Will we have more analytics in Ford cars? 28:25 How does Ford stay competitive from a technology perspective. 30:30 Challenges for Analytics officer in Ford. 32:36 Ingredients of a good hire. 34:12 How is the data science team structured in Ford. 36:15 Dealing with shadow groups. 39:00 Successful KPIs. 40:33 Who owns data? 42:27 Who should own the security of data assets. 44:05 Examples of successful data science groups. 46:30 Practises for remaining bias-free. 48:55 Getting started running a global data science team. 52:45 How does Paul's keep himself updated. 54:18 Paul's favorite read. 55:45 Closing remarks.

Paul's Recommended Read: The Outsiders Paperback – S. E. Hinton http://amzn.to/2Ai84Gl

Podcast Link: https://futureofdata.org/paul-ballewford-running-global-data-science-group-futureofdata-podcast/

Paul's BIO: Paul Ballew is vice president and Global Chief Data and Analytics officer, Ford Motor Company, effective June 1, 2017. At the same time, he also was elected a Ford Motor Company officer. In this role, he leads Ford’s global data and analytics teams for the enterprise. Previously, Ballew was Global Chief Data and Analytics Officer, a position to which he was named in December 2014. In this role, he has been responsible for establishing and growing the company’s industry-leading data and analytics operations that are driving significant business value throughout the enterprise. Prior to joining Ford, he was Chief Data, Insight & Analytics Officer at Dun & Bradstreet. In this capacity, he was responsible for the company’s global data and analytic activities along with the company’s strategic consulting practice. Previously, Ballew served as Nationwide’s senior vice president for Customer Insight and Analytics. He directed customer analytics, market research, and information and data management functions, and supported the company’s marketing strategy. His responsibilities included the development of Nationwide’s customer analytics, data operations, and strategy. Ballew joined Nationwide in November 2007 and established the company’s Customer Insights and Analytics capabilities.

Ballew sits on the boards of Neustar, Inc. and Hyatt Hotels Corporation. He was born in 1964 and has a bachelor’s and master’s degree in Economics from the University of Detroit.

About #Podcast:

FutureOfData podcast is a conversation starter to bring leaders, influencers, and lead practitioners to discuss their journey in creating the data-driven future.

Wanna Join? If you or any you know wants to join in, Register your interest @ http://play.analyticsweek.com/guest/

Want to sponsor? Email us @ [email protected]

Keywords:

FutureOfData #DataAnalytics #Leadership #Podcast #BigData #Strategy

Summary

Time series databases have long been the cornerstone of a robust metrics system, but the existing options are often difficult to manage in production. In this episode Jeroen van der Heijden explains his motivation for writing a new database, SiriDB, the challenges that he faced in doing so, and how it works under the hood.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Jeroen van der Heijden about SiriDB, a next generation time series database

Interview

Introduction How did you get involved in the area of data engineering? What is SiriDB and how did the project get started?

What was the inspiration for the name?

What was the landscape of time series databases at the time that you first began work on Siri? How does Siri compare to other time series databases such as InfluxDB, Timescale, KairosDB, etc.? What do you view as the competition for Siri? How is the server architected and how has the design evolved over the time that you have been working on it? Can you describe how the clustering mechanism functions?

Is it possible to create pools with more than two servers?

What are the failure modes for SiriDB and where does it fall on the spectrum for the CAP theorem? In the documentation it mentions needing to specify the retention period for the shards when creating a database. What is the reasoning for that and what happens to the individual metrics as they age beyond that time horizon? One of the common difficulties when using a time series database in an operations context is the need for high cardinality of the metrics. How are metrics identified in Siri and is there any support for tagging? What have been the most challenging aspects of building Siri? In what situations or environments would you advise against using Siri?

Contact Info

joente on Github LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

SiriDB Oversight InfluxDB LevelDB OpenTSDB Timescale DB KairosDB Write Ahead Log Grafana

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

To process your data you need to know what shape it has, which is why schemas are important. When you are processing that data in multiple systems it can be difficult to ensure that they all have an accurate representation of that schema, which is why Confluent has built a schema registry that plugs into Kafka. In this episode Ewen Cheslack-Postava explains what the schema registry is, how it can be used, and how they built it. He also discusses how it can be extended for other deployment targets and use cases, and additional features that are planned for future releases.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Ewen Cheslack-Postava about the Confluent Schema Registry

Interview

Introduction How did you get involved in the area of data engineering? What is the schema registry and what was the motivating factor for building it? If you are using Avro, what benefits does the schema registry provide over and above the capabilities of Avro’s built in schemas? How did you settle on Avro as the format to support and what would be involved in expanding that support to other serialization options? Conversely, what would be involved in using a storage backend other than Kafka? What are some of the alternative technologies available for people who aren’t using Kafka in their infrastructure? What are some of the biggest challenges that you faced while designing and building the schema registry? What is the tipping point in terms of system scale or complexity when it makes sense to invest in a shared schema registry and what are the alternatives for smaller organizations? What are some of the features or enhancements that you have in mind for future work?

Contact Info

ewencp on GitHub Website @ewencp on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Kafka Confluent Schema Registry Second Life Eve Online Yes, Virginia, You Really Do Need a Schema Registry JSON-Schema Parquet Avro Thrift Protocol Buffers Zookeeper Kafka Connect

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Learning Pentaho Data Integration 8 CE - Third Edition

"Learning Pentaho Data Integration 8 CE" is your comprehensive guide to mastering data manipulation and integration using Pentaho Data Integration (PDI) 8 Community Edition. Through step-by-step instructions and practical examples, you'll learn to explore, transform, validate, and integrate data from multiple sources, equipping you to handle real-world data challenges efficiently. What this Book will help me do Effectively install and understand the foundational concepts of Pentaho Data Integration 8 Community Edition. Efficiently organize, clean, and transform raw data from various sources into useful formats. Perform advanced data operations like metadata injection, managing relational databases, and implementing ETL solutions. Design, create, and deploy comprehensive data warehouse solutions using modern best practices. Streamline daily data processing tasks with flexibility and accuracy while handling errors gracefully. Author(s) The author, Carina Roldán, is an experienced professional in the field of data science and ETL (Extract, Transform, Load) development. Her expertise in leveraging tools like Pentaho Data Integration has allowed her to contribute significantly to BI and data management projects. Her approach in writing this book reflects her commitment to simplifying complex topics for aspiring professionals. Who is it for? This book is ideal for software developers, data analysts, business intelligence professionals, and IT students aiming to enhance their skills in ETL processes using Pentaho Data Integration. Beginners who wish to learn PDI comprehensively and professionals looking to deepen their expertise will both find value in this resource. It's also suitable for individuals involved in data warehouse design and implementation. This book will equip you with the skills to handle diverse data transformation tasks effectively.

Summary

We have tools and platforms for collaborating on software projects and linking them together, wouldn’t it be nice to have the same capabilities for data? The team at data.world are working on building a platform to host and share data sets for public and private use that can be linked together to build a semantic web of information. The CTO, Bryon Jacob, discusses how the company got started, their mission, and how they have built and evolved their technical infrastructure.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers This is your host Tobias Macey and today I’m interviewing Bryon Jacob about the technology and purpose that drive data.world

Interview

Introduction How did you first get involved in the area of data management? What is data.world and what is its mission and how does your status as a B Corporation tie into that? The platform that you have built provides hosting for a large variety of data sizes and types. What does the technical infrastructure consist of and how has that architecture evolved from when you first launched? What are some of the scaling problems that you have had to deal with as the amount and variety of data that you host has increased? What are some of the technical challenges that you have been faced with that are unique to the task of hosting a heterogeneous assortment of data sets that intended for shared use? How do you deal with issues of privacy or compliance associated with data sets that are submitted to the platform? What are some of the improvements or new capabilities that you are planning to implement as part of the data.world platform? What are the projects or companies that you consider to be your competitors? What are some of the most interesting or unexpected uses of the data.world platform that you are aware of?

Contact Information

@bryonjacob on Twitter bryonjacob on GitHub LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

data.world HomeAway Semantic Web Knowledge Engineering Ontology Open Data RDF CSVW SPARQL DBPedia Triplestore Header Dictionary Triples Apache Jena Tabula Tableau Connector Excel Connector Data For Democracy Jonathan Morgan

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary With the wealth of formats for sending and storing data it can be difficult to determine which one to use. In this episode Doug Cutting, creator of Avro, and Julien Le Dem, creator of Parquet, dig into the different classes of serialization formats, what their strengths are, and how to choose one for your workload. They also discuss the role of Arrow as a mechanism for in-memory data sharing and how hardware evolution will influence the state of the art for data formats.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers This is your host Tobias Macey and today I’m interviewing Julien Le Dem and Doug Cutting about data serialization formats and how to pick the right one for your systems.

Interview

Introduction How did you first get involved in the area of data management? What are the main serialization formats used for data storage and analysis? What are the tradeoffs that are offered by the different formats? How have the different storage and analysis tools influenced the types of storage formats that are available? You’ve each developed a new on-disk data format, Avro and Parquet respectively. What were your motivations for investing that time and effort? Why is it important for data engineers to carefully consider the format in which they transfer their data between systems?

What are the switching costs involved in moving from one format to another after you have started using it in a production system?

What are some of the new or upcoming formats that you are each excited about? How do you anticipate the evolving hardware, patterns, and tools for processing data to influence the types of storage formats that maintain or grow their popularity?

Contact Information

Doug:

cutting on GitHub Blog @cutting on Twitter

Julien

Email @J_ on Twitter Blog julienledem on GitHub

Links

Apache Avro Apache Parquet Apache Arrow Hadoop Apache Pig Xerox Parc Excite Nutch Vertica Dremel White Paper

Twitter Blog on Release of Parquet

CSV XML Hive Impala Presto Spark SQL Brotli ZStandard Apache Drill Trevni Apache Calcite

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast