talk-data.com talk-data.com

Topic

ELK

Elasticsearch/ELK Stack

search_engine log_analysis elk_stack

168

tagged

Activity Trend

10 peak/qtr
2020-Q1 2026-Q1

Activities

168 activities · Newest first

Summary

Every business with a website needs some way to keep track of how much traffic they are getting, where it is coming from, and which actions are being taken. The default in most cases is Google Analytics, but this can be limiting when you wish to perform detailed analysis of the captured data. To address this problem, Alex Dean co-founded Snowplow Analytics to build an open source platform that gives you total control of your website traffic data. In this episode he explains how the project and company got started, how the platform is architected, and how you can start using it today to get a clearer view of how your customers are interacting with your web and mobile applications.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. You work hard to make sure that your data is reliable and accurate, but can you say the same about the deployment of your machine learning models? The Skafos platform from Metis Machine was built to give your data scientists the end-to-end support that they need throughout the machine learning lifecycle. Skafos maximizes interoperability with your existing tools and platforms, and offers real-time insights and the ability to be up and running with cloud-based production scale infrastructure instantaneously. Request a demo at dataengineeringpodcast.com/metis-machine to learn more about how Metis Machine is operationalizing data science. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat This is your host Tobias Macey and today I’m interviewing Alexander Dean about Snowplow Analytics

Interview

Introductions How did you get involved in the area of data engineering and data management? What is Snowplow Analytics and what problem were you trying to solve when you started the company? What is unique about customer event data from an ingestion and processing perspective? Challenges with properly matching up data between sources Data collection is one of the more difficult aspects of an analytics pipeline because of the potential for inconsistency or incorrect information. How is the collection portion of the Snowplow stack designed and how do you validate the correctness of the data?

Cleanliness/accuracy

What kinds of metrics should be tracked in an ingestion pipeline and how do you monitor them to ensure that everything is operating properly? Can you describe the overall architecture of the ingest pipeline that Snowplow provides?

How has that architecture evolved from when you first started? What would you do differently if you were to start over today?

Ensuring appropriate use of enrichment sources What have been some of the biggest challenges encountered while building and evolving Snowplow? What are some of the most interesting uses of your platform that you are aware of?

Keep In Touch

Alex

@alexcrdean on Twitter LinkedIn

Snowplow

@snowplowdata on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Snowplow

GitHub

Deloitte Consulting OpenX Hadoop AWS EMR (Elastic Map-Reduce) Business Intelligence Data Warehousing Google Analytics CRM (Customer Relationship Management) S3 GDPR (General Data Protection Regulation) Kinesis Kafka Google Cloud Pub-Sub JSON-Schema Iglu IAB Bots And Spiders List Heap Analytics

Podcast Interview

Redshift SnowflakeDB Snowplow Insights Googl

Summary

Elasticsearch is a powerful tool for storing and analyzing data, but when using it for logs and other time oriented information it can become problematic to keep all of your history. Chaos Search was started to make it easy for you to keep all of your data and make it usable in S3, so that you can have the best of both worlds. In this episode the CTO, Thomas Hazel, and VP of Product, Pete Cheslock, describe how they have built a platform to let you keep all of your history, save money, and reduce your operational overhead. They also explain some of the types of data that you can use with Chaos Search, how to load it into S3, and when you might want to choose it over Amazon Athena for our serverless data analysis.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $/0 credit and launch a new server in under a minute. You work hard to make sure that your data is reliable and accurate, but can you say the same about the deployment of your machine learning models? The Skafos platform from Metis Machine was built to give your data scientists the end-to-end support that they need throughout the machine learning lifecycle. Skafos maximizes interoperability with your existing tools and platforms, and offers real-time insights and the ability to be up and running with cloud-based production scale infrastructure instantaneously. Request a demo at dataengineeringpodcast.com/metis-machine to learn more about how Metis Machine is operationalizing data science. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Pete Cheslock and Thomas Hazel about Chaos Search and their effort to bring historical depth to your Elasticsearch data

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what you have built at Chaos Search and the problems that you are trying to solve with it?

What types of data are you focused on supporting? What are the challenges inherent to scaling an elasticsearch infrastructure to large volumes of log or metric data?

Is there any need for an Elasticsearch cluster in addition to Chaos Search? For someone who is using Chaos Search, what mechanisms/formats would they use for loading their data into S3? What are the benefits of implementing the Elasticsearch API on top of your data in S3 as opposed to using systems such as Presto or Drill to interact with the same information via SQL? Given that the S3 API has become a de facto standard for many other object storage platforms, what would be involved in running Chaos Search on data stored outside of AWS? What mechanisms do you use to allow for such drastic space savings of indexed data in S3 versus in an Elasticsearch cluster? What is the system architecture that you have built to allow for querying terabytes of data in S3?

What are the biggest contributors to query latency and what have you done to mitigate them?

What are the options for access control when running queries against the data stored in S3? What are some of the most interesting or unexpected uses of Chaos Search and access to large amounts of historical log information that you have seen? What are your plans for the future of Chaos Search?

Contact Info

Pete Cheslock

@petecheslock on Twitter Website

Thomas Hazel

@thomashazel on Twitter LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tool

Summary

There are myriad reasons why data should be protected, and just as many ways to enforce it in tranist or at rest. Unfortunately, there is still a weak point where attackers can gain access to your unencrypted information. In this episode Ellison Anny Williams, CEO of Enveil, describes how her company uses homomorphic encryption to ensure that your analytical queries can be executed without ever having to decrypt your data.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch. Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat Your host is Tobias Macey and today I’m interviewing Ellison Anne Williams about Enveil, a pioneering data security company protecting Data in Use

Interview

Introduction How did you get involved in the area of data security? Can you start by explaining what your mission is with Enveil and how the company got started? One of the core aspects of your platform is the principal of homomorphic encryption. Can you explain what that is and how you are using it?

What are some of the challenges associated with scaling homomorphic encryption? What are some difficulties associated with working on encrypted data sets?

Can you describe the underlying architecture for your data platform?

How has that architecture evolved from when you first began building it?

What are some use cases that are unlocked by having a fully encrypted data platform? For someone using the Enveil platform, what does their workflow look like? A major reason for never decrypting data is to protect it from attackers and unauthorized access. What are some of the remaining attack vectors? What are some aspects of the data being protected that still require additional consideration to prevent leaking information? (e.g. identifying individuals based on geographic data, or purchase patterns) What do you have planned for the future of Enveil?

Contact Info

LinkedIn

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data security today?

Links

Enveil NSA GDPR Intellectual Property Zero Trust Homomorphic Encryption Ciphertext Hadoop PII (Personally Identifiable Information) TLS (Transport Layer Security) Spark Elasticsearch Side-channel attacks Spectre and Meltdown

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

SAP HANA and ESS: A Winning Combination

SAP HANA on IBM® POWER® is an established HANA solution with which customers can run HANA-based analytic and business applications on a flexible IBM Power based infrastructure. IT assets, such as servers, storage, and skills and operation procedures, can easily be used and reused instead of enforcing more investment into dedicated SAP HANA only appliances. In this scenario, IBM Spectrum™ Scale as the underlying block storage and files system adds further benefits to this solution stack to take advantage of scale effects, higher availability, simplification, and performance. With the IBM Elastic Storage™ Server (ESS) based on IBM Spectrum Scale™, RAID capabilities are added to the file system. By using the intelligent internal logic of the IBM Spectrum Scale RAID code, reasonable performance and significant disk failure recovery improvements are achieved. This IBM Redpaper™ publication focuses on the benefits and advantages of implementing a HANA solution on top of IBM Spectrum Scale storage file system. This paper is intended to help experienced administrators and IT specialists to plan and set up an IBM Spectrum Scale cluster and configure an ESS for SAP HANA workloads. It provides important tips and bestpreferred practices about how to manage IBM Spectrum Scale''s availability and performance. If you are familiar with ESS, IBM Spectrum Scale, and IBM Spectrum Scale RAID, and you need only the pertinent documentation about how to configure a IBM Spectrum Scale cluster with an ESS for SAP HANA, see Chapter 5, "IBM Spectrum Scale customization for HANA" on page 25. Before reading this IBM Redpaper publication, you should be familiar with the basic concepts of IBM Spectrum Scale and IBM Spectrum Scale RAID. This IBM Redpaper publication can be helpful for architects and specialists who are planning an SAP HANA on POWER deployment with the IBM Spectrum Scale file system. For more information about planning considerations for Power, see the SAP HANA on Power Planning Guide.

Mastering Kibana 6.x

Mastering Kibana 6.x is your guide to leveraging Kibana for creating impactful data visualizations and insightful dashboards. From setting up basic visualizations to exploring advanced analytics and machine learning integrations, this book equips you with the necessary skills to dive deep into your data and gain actionable insights at scale. You'll also learn to effectively manage and monitor data with powerful tools such as X-Pack and Beats. What this Book will help me do Build sophisticated dashboards to visualize elastic stack data effectively. Understand and utilize Timelion expressions for analyzing time series data. Incorporate X-Pack capabilities to enhance security and monitoring in Kibana. Extract, analyze, and visualize data from Elasticsearch for advanced analytics. Set up monitoring and alerting using Beats components for reliable data operations. Author(s) With extensive experience in big data technologies, the author brings a practical approach to teaching advanced Kibana topics. Having worked on real-world data analytics projects, their aim is to make complex concepts accessible while showing how to tackle analytics challenges using Kibana. Who is it for? This book is ideal for data engineers, DevOps professionals, and data scientists who want to optimize large-scale data visualizations. If you're looking to manage Elasticsearch data through insightful dashboards and visual analytics, or enhance your data operations with features like machine learning, then this book is perfect for you. A basic understanding of the Elastic Stack is helpful, though not required.

Summary

Building an ETL pipeline is a common need across businesses and industries. It’s easy to get one started but difficult to manage as new requirements are added and greater scalability becomes necessary. Rather than duplicating the efforts of other engineers it might be best to use a hosted service to handle the plumbing so that you can focus on the parts that actually matter for your business. In this episode CTO and co-founder of Alooma, Yair Weinberger, explains how the platform addresses the common needs of data collection, manipulation, and storage while allowing for flexible processing. He describes the motivation for starting the company, how their infrastructure is architected, and the challenges of supporting multi-tenancy and a wide variety of integrations.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Yair Weinberger about Alooma, a company providing data pipelines as a service

Interview

Introduction How did you get involved in the area of data management? What is Alooma and what is the origin story? How is the Alooma platform architected?

I want to go into stream VS batch here What are the most challenging components to scale?

How do you manage the underlying infrastructure to support your SLA of 5 nines? What are some of the complexities introduced by processing data from multiple customers with various compliance requirements?

How do you sandbox user’s processing code to avoid security exploits?

What are some of the potential pitfalls for automatic schema management in the target database? Given the large number of integrations, how do you maintain the

What are some challenges when creating integrations, isn’t it simply conforming with an external API?

For someone getting started with Alooma what does the workflow look like? What are some of the most challenging aspects of building and maintaining Alooma? What are your plans for the future of Alooma?

Contact Info

LinkedIn @yairwein on Twitter

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Alooma Convert Media Data Integration ESB (Enterprise Service Bus) Tibco Mulesoft ETL (Extract, Transform, Load) Informatica Microsoft SSIS OLAP Cube S3 Azure Cloud Storage Snowflake DB Redshift BigQuery Salesforce Hubspot Zendesk Spark The Log: What every software engineer should know about real-time data’s unifying abstraction by Jay Kreps RDBMS (Relational Database Management System) SaaS (Software as a Service) Change Data Capture Kafka Storm Google Cloud PubSub Amazon Kinesis Alooma Code Engine Zookeeper Idempotence Kafka Streams Kubernetes SOC2 Jython Docker Python Javascript Ruby Scala PII (Personally Identifiable Information) GDPR (General Data Protection Regulation) Amazon EMR (Elastic Map Reduce) Sequoia Capital Lightspeed Investors Redis Aerospike Cassandra MongoDB

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

IBM Spectrum Scale Best Practices for Genomics Medicine Workloads

Advancing the science of medicine by targeting a disease more precisely with treatment specific to each patient relies on access to that patient's genomics information and the ability to process massive amounts of genomics data quickly. Although genomics data is becoming a critical source for precision medicine, it is expected to create an expanding data ecosystem. Therefore, hospitals, genome centers, medical research centers, and other clinical institutes need to explore new methods of storing, accessing, securing, managing, sharing, and analyzing significant amounts of data. Healthcare and life sciences organizations that are running data-intensive genomics workloads on an IT infrastructure that lacks scalability, flexibility, performance, management, and cognitive capabilities also need to modernize and transform their infrastructure to support current and future requirements. IBM® offers an integrated solution for genomics that is based on composable infrastructure. This solution enables administrators to build an IT environment in a way that disaggregates the underlying compute, storage, and network resources. Such a composable building block based solution for genomics addresses the most complex data management aspect and allows organizations to store, access, manage, and share huge volumes of genome sequencing data. IBM Spectrum™ Scale is software-defined storage that is used to manage storage and provide massive scale, a global namespace, and high-performance data access with many enterprise features. IBM Spectrum Scale™ is used in clustered environments, provides unified access to data via file protocols (POSIX, NFS, and SMB) and object protocols (Swift and S3), and supports analytic workloads via HDFS connectors. Deploying IBM Spectrum Scale and IBM Elastic Storage™ Server (IBM ESS) as a composable storage building block in a Genomics Next Generation Sequencing deployment offers key benefits of performance, scalability, analytics, and collaboration via multiple protocols. This IBM Redpaper™ publication describes a composable solution with detailed architecture definitions for storage, compute, and networking services for genomics next generation sequencing that enable solution architects to benefit from tried-and-tested deployments, to quickly plan and design an end-to-end infrastructure deployment. The preferred practices and fully tested recommendations described in this paper are derived from running GATK Best Practices work flow from the Broad Institute. The scenarios provide all that is required, including ready-to-use configuration and tuning templates for the different building blocks (compute, network, and storage), that can enable simpler deployment and that can enlarge the level of assurance over the performance for genomics workloads. The solution is designed to be elastic in nature, and the disaggregation of the building blocks allows IT administrators to easily and optimally configure the solution with maximum flexibility. The intended audience for this paper is technical decision makers, IT architects, deployment engineers, and administrators who are working in the healthcare domain and who are working on genomics-based workloads.

Summary

The rate of change in the data engineering industry is alternately exciting and exhausting. Joe Crobak found his way into the work of data management by accident as so many of us do. After being engrossed with researching the details of distributed systems and big data management for his work he began sharing his findings with friends. This led to his creation of the Hadoop Weekly newsletter, which he recently rebranded as the Data Engineering Weekly newsletter. In this episode he discusses his experiences working as a data engineer in industry and at the USDS, his motivations and methods for creating a newsleteter, and the insights that he has gleaned from it.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Joe Crobak about his work maintaining the Data Engineering Weekly newsletter, and the challenges of keeping up with the data engineering industry.

Interview

Introduction How did you get involved in the area of data management? What are some of the projects that you have been involved in that were most personally fulfilling?

As an engineer at the USDS working on the healthcare.gov and medicare systems, what were some of the approaches that you used to manage sensitive data? Healthcare.gov has a storied history, how did the systems for processing and managing the data get architected to handle the amount of load that it was subjected to?

What was your motivation for starting a newsletter about the Hadoop space?

Can you speak to your reasoning for the recent rebranding of the newsletter?

How much of the content that you surface in your newsletter is found during your day-to-day work, versus explicitly searching for it? After over 5 years of following the trends in data analytics and data infrastructure what are some of the most interesting or surprising developments?

What have you found to be the fundamental skills or areas of experience that have maintained relevance as new technologies in data engineering have emerged?

What is your workflow for finding and curating the content that goes into your newsletter? What is your personal algorithm for filtering which articles, tools, or commentary gets added to the final newsletter? How has your experience managing the newsletter influenced your areas of focus in your work and vice-versa? What are your plans going forward?

Contact Info

Data Eng Weekly Email Twitter – @joecrobak Twitter – @dataengweekly

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

USDS National Labs Cray Amazon EMR (Elastic Map-Reduce) Recommendation Engine Netflix Prize Hadoop Cloudera Puppet healthcare.gov Medicare Quality Payment Program HIPAA NIST National Institute of Standards and Technology PII (Personally Identifiable Information) Threat Modeling Apache JBoss Apache Web Server MarkLogic JMS (Java Message Service) Load Balancer COBOL Hadoop Weekly Data Engineering Weekly Foursquare NiFi Kubernetes Spark Flink Stream Processing DataStax RSS The Flavors of Data Science and Engineering CQRS Change Data Capture Jay Kreps

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Modern Big Data Processing with Hadoop

Delve into the world of big data with 'Modern Big Data Processing with Hadoop.' This comprehensive guide introduces you to the powerful capabilities of Apache Hadoop and its ecosystem to solve data processing and analytics challenges. By the end, you will have mastered the techniques necessary to architect innovative, scalable, and efficient big data solutions. What this Book will help me do Master the principles of building an enterprise-level big data strategy with Apache Hadoop. Learn to integrate Hadoop with tools such as Apache Spark, Elasticsearch, and more for comprehensive solutions. Set up and manage your big data architecture, including deployment on cloud platforms with Apache Ambari. Develop real-time data pipelines and enterprise search solutions. Leverage advanced visualization tools like Apache Superset to make sense of data insights. Author(s) None R. Patil, None Kumar, and None Shindgikar are experienced big data professionals and accomplished authors. With years of hands-on experience in implementing and managing Apache Hadoop systems, they bring a depth of expertise to their writing. Their dedication lies in making complex technical concepts accessible while demonstrating real-world best practices. Who is it for? This book is designed for data professionals aiming to advance their expertise in big data solutions using Apache Hadoop. Ideal readers include engineers and project managers involved in data architecture and those aspiring to become big data architects. Some prior exposure to big data systems is beneficial to fully benefit from this book's insights and tutorials.

IBM TS4500 R4 Tape Library Guide

Abstract The IBM® TS4500 (TS4500) tape library is a next-generation tape solution that offers higher storage density and integrated management than previous solutions. This IBM Redbooks® publication gives you a close-up view of the new IBM TS4500 tape library. In the TS4500, IBM delivers the density that today's and tomorrow's data growth requires. It has the cost-effectiveness and the manageability to grow with business data needs, while you preserve existing investments in IBM tape library products. Now, you can achieve both a low cost per terabyte (TB) and a high TB density per square foot, because the TS4500 can store up to 8.25 petabytes (PB) of uncompressed data in a single frame library or scale up at 1.5 PB per square foot to over 263 PB, which is more than 4 times the capacity of the IBM TS3500 tape library. The TS4500 offers these benefits: High availability dual active accessors with integrated service bays to reduce inactive service space by 40%. The Elastic Capacity option can be used to completely eliminate inactive service space. Flexibility to grow: The TS4500 library can grow from both the right side and the left side of the first L frame because models can be placed in any active position. Increased capacity: The TS4500 can grow from a single L frame up to an additional 17 expansion frames with a capacity of over 23,000 cartridges. High-density (HD) generation 1 frames from the existing TS3500 library can be redeployed in a TS4500. Capacity on demand (CoD): CoD is supported through entry-level, intermediate, and base-capacity configurations. Advanced Library Management System (ALMS): ALMS supports dynamic storage management, which enables users to create and change logical libraries and configure any drive for any logical library. Support for the IBM TS1155 while also supporting TS1150 and TS1140 tape drive: The TS1155 gives organizations an easy way to deliver fast access to data, improve security, and provide long-term retention, all at a lower cost than disk solutions. The TS1155 offers high-performance, flexible data storage with support for data encryption. Also, this enhanced fifth-generation drive can help protect investments in tape automation by offering compatibility with existing automation. The new TS1155 Tape Drive Model 55E delivers a 10 Gb Ethernet host attachment interface optimized for cloud-based and hyperscale environments. The TS1155 Tape Drive Model 55F delivers a native data rate of 360 MBps, the same load/ready, locate speeds, and access times as the TS1150, and includes dual-port 8 Gb Fibre Channel support. Support of the IBM Linear Tape-Open (LTO) Ultrium 8 tape drive: The LTO Ultrium 8 offering represents significant improvements in capacity, performance, and reliability over the previous generation, LTO Ultrium 7, while they still protect your investment in the previous technology. Support of LTO 8 Type M cartridge (M8): The LTO Program is introducing a new capability with LTO-8 drives. The ability of the LTO-8 drive to write 9 TB on a brand new LTO-7 cartridge instead of 6 TB as specified by the LTO-7 format. Such a cartridge is called an LTO-7 initialized LTO-8 Type M cartridge. Integrated TS7700 back-end Fibre Channel (FC) switches are available. Up to four library-managed encryption (LME) key paths per logical library are available. This book describes the TS4500 components, feature codes, specifications, supported tape drives, encryption, new integrated management console (IMC), and command-line interface (CLI). You learn how to accomplish several specific tasks: Improve storage density with increased expansion frame capacity up to 2.4 times and support 33% more tape drives per frame. Manage storage by using the ALMS feature. Improve business continuity and disaster recovery with dual active accessor, automatic control path failover, and data path failover. Help ensure security and regulatory compliance with tape-drive encryption and Write Once Read Many (WORM) media. Support IBM LTO Ultrium 8, 7, 6, and 5, IBM TS1155, TS1150, and TS1140 tape drives. Provide a flexible upgrade path for users who want to expand their tape storage as their needs grow. Reduce the storage footprint and simplify cabling with 10 U of rack space on top of the library. This guide is for anyone who wants to understand more about the IBM TS4500 tape library. It is particularly suitable for IBM clients, IBM Business Partners, IBM specialist sales representatives, and technical specialists.

Summary

Search is a common requirement for applications of all varieties. Elasticsearch was built to make it easy to include search functionality in projects built in any language. From that foundation, the rest of the Elastic Stack has been built, expanding to many more use cases in the proces. In this episode Philipp Krenn describes the various pieces of the stack, how they fit together, and how you can use them in your infrastructure to store, search, and analyze your data.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data management When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute. For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. Your host is Tobias Macey and today I’m interviewing Philipp Krenn about the Elastic Stack and the ways that you can use it in your systems

Interview

Introduction How did you get involved in the area of data management? The Elasticsearch product has been around for a long time and is widely known, but can you give a brief overview of the other components that make up the Elastic Stack and how they work together? Beyond the common pattern of using Elasticsearch as a search engine connected to a web application, what are some of the other use cases for the various pieces of the stack? What are the common scaling bottlenecks that users should be aware of when they are dealing with large volumes of data? What do you consider to be the biggest competition to the Elastic Stack as you expand the capabilities and target usage patterns? What are the biggest challenges that you are tackling in the Elastic stack, technical or otherwise? What are the biggest challenges facing Elastic as a company in the near to medium term? Open source as a business model: https://www.elastic.co/blog/doubling-down-on-open?utm_source=rss&utm_medium=rss What is the vision for Elastic and the Elastic Stack going forward and what new features or functionality can we look forward to?

Contact Info

@xeraa on Twitter xeraa on GitHub Website Email

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Elastic Vienna – Capital of Austria What Is Developer Advocacy? NoSQL MongoDB Elasticsearch Cassandra Neo4J Hazelcast Apache Lucene Logstash Kibana Beats X-Pack ELK Stack Metrics APM (Application Performance Monitoring) GeoJSON Split Brain Elasticsearch Ingest Nodes PacketBeat Elastic Cloud Elasticon Kibana Canvas SwiftType

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Summary

As communications between machines become more commonplace the need to store the generated data in a time-oriented manner increases. The market for timeseries data stores has many contenders, but they are not all built to solve the same problems or to scale in the same manner. In this episode the founders of TimescaleDB, Ajay Kulkarni and Mike Freedman, discuss how Timescale was started, the problems that it solves, and how it works under the covers. They also explain how you can start using it in your infrastructure and their plans for the future.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers Your host is Tobias Macey and today I’m interviewing Ajay Kulkarni and Mike Freedman about Timescale DB, a scalable timeseries database built on top of PostGreSQL

Interview

Introduction How did you get involved in the area of data management? Can you start by explaining what Timescale is and how the project got started? The landscape of time series databases is extensive and oftentimes difficult to navigate. How do you view your position in that market and what makes Timescale stand out from the other options? In your blog post that explains the design decisions for how Timescale is implemented you call out the fact that the inserted data is largely append only which simplifies the index management. How does Timescale handle out of order timestamps, such as from infrequently connected sensors or mobile devices? How is Timescale implemented and how has the internal architecture evolved since you first started working on it?

What impact has the 10.0 release of PostGreSQL had on the design of the project? Is timescale compatible with systems such as Amazon RDS or Google Cloud SQL?

For someone who wants to start using Timescale what is involved in deploying and maintaining it? What are the axes for scaling Timescale and what are the points where that scalability breaks down?

Are you aware of anyone who has deployed it on top of Citus for scaling horizontally across instances?

What has been the most challenging aspect of building and marketing Timescale? When is Timescale the wrong tool to use for time series data? One of the use cases that you call out on your website is for systems metrics and monitoring. How does Timescale fit into that ecosystem and can it be used along with tools such as Graphite or Prometheus? What are some of the most interesting uses of Timescale that you have seen? Which came first, Timescale the business or Timescale the database, and what is your strategy for ensuring that the open source project and the company around it both maintain their health? What features or improvements do you have planned for future releases of Timescale?

Contact Info

Ajay

LinkedIn @acoustik on Twitter Timescale Blog

Mike

Website LinkedIn @michaelfreedman on Twitter Timescale Blog

Timescale

Website @timescaledb on Twitter GitHub

Parting Question

From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Timescale PostGreSQL Citus Timescale Design Blog Post MIT NYU Stanford SDN Princeton Machine Data Timeseries Data List of Timeseries Databases NoSQL Online Transaction Processing (OLTP) Object Relational Mapper (ORM) Grafana Tableau Kafka When Boring Is Awesome PostGreSQL RDS Google Cloud SQL Azure DB Docker Continuous Aggregates Streaming Replication PGPool II Kubernetes Docker Swarm Citus Data

Website Data Engineering Podcast Interview

Database Indexing B-Tree Index GIN Index GIST Index STE Energy Redis Graphite Prometheus pg_prometheus OpenMetrics Standard Proposal Timescale Parallel Copy Hadoop PostGIS KDB+ DevOps Internet of Things MongoDB Elastic DataBricks Apache Spark Confluent New Enterprise Associates MapD Benchmark Ventures Hortonworks 2σ Ventures CockroachDB Cloudflare EMC Timescale Blog: Why SQL is beating NoSQL, and what this means for the future of data

The intro and outro music is from a href="http://freemusicarchive.org/music/The_Freak_Fandango_Orchestra/Love_death_and_a_drunken_monkey/04_-_The_Hug?utm_source=rss&utm_medium=rss" target="_blank"…

Apache Kafka 1.0 Cookbook

Dive into the essential resource for mastering Apache Kafka with this cookbook of practical recipes. You'll explore the dynamic features of Kafka 1.0, integrate it with enterprise data solutions, and confidently manage messaging and streaming data in real-time. What this Book will help me do Effectively install and configure Apache Kafka in a professional environment. Implement Kafka producers and consumers to manage real-time data streams. Utilize Confluent platforms and Kafka streams for advanced data processing. Monitor Kafka clusters with tools like Graphite and Ganglia for optimal performance. Integrate Kafka seamlessly with tools such as Hadoop, Spark, and Elasticsearch. Author(s) None Estrada and None Zinoviev have extensive experience in enterprise data systems and have been dedicated contributors to the Apache Kafka ecosystem. Their combined expertise encompasses developing robust, real-time distributed systems and delivering insightful technical guidance. Through this book, they share their vast knowledge and practical solutions, tailored for both developers and administrators. Who is it for? This book is tailored for developers and administrators looking to enhance their expertise in Apache Kafka. Developers should be comfortable with Java or Scala to fully utilize examples, while administrators benefit from prior knowledge of Kafka operations. Ideal readers are those seeking actionable techniques to efficiently manage and integrate Kafka into their enterprise systems.

Learning Elastic Stack 6.0

Learn how to harness the power of the Elastic Stack 6.0 to manage, analyze, and visualize data effectively. This book introduces you to Elasticsearch, Logstash, Kibana, and other components, helping you build scalable, real-time data processing solutions from scratch. By reading this guide, you'll gain practical insights into the platform's components, including tips for production deployment. What this Book will help me do Understand and utilize the core components of Elastic Stack 6.0, including Elasticsearch, Logstash, and Kibana. Set up scalable data pipelines for ingesting and processing vast amounts of data. Craft real-time data visualizations and analytics using Kibana. Secure and monitor Elastic Stack deployments with X-Pack and other related tools. Deploy Elastic Stack applications effectively in cloud or on-premise production environments. Author(s) Pranav Shukla and Sharath Kumar are experienced professionals with deep knowledge in distributed data systems and the Elastic Stack ecosystem. They are passionate about data analytics and visualization and bring their hands-on experience in building real-world Elastic Stack applications into this book. Their practical approach and explanatory style make complex concepts accessible to readers at all levels. Who is it for? This book is perfect for data professionals who want to analyze large datasets or create effective real-time visualizations. It is suited for those new to Elastic Stack or looking to understand its capabilities. Basic JSON knowledge is recommended, but no prior expertise with Elastic Stack is required to benefit from this practical guide.

Fundamentals of Predictive Analytics with JMP, Second Edition

Written for students in undergraduate and graduate statistics courses, as well as for the practitioner who wants to make better decisions from data and models, this updated and expanded second edition of Fundamentals of Predictive Analytics with JMP(R) bridges the gap between courses on basic statistics, which focus on univariate and bivariate analysis, and courses on data mining and predictive analytics. Going beyond the theoretical foundation, this book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. First, this book teaches you to recognize when it is appropriate to use a tool, what variables and data are required, and what the results might be. Second, it teaches you how to interpret the results and then, step-by-step, how and where to perform and evaluate the analysis in JMP . Using JMP 13 and JMP 13 Pro, this book offers the following new and enhanced features in an example-driven format: an add-in for Microsoft Excel Graph Builder dirty data visualization regression ANOVA logistic regression principal component analysis LASSO elastic net cluster analysis decision trees k-nearest neighbors neural networks bootstrap forests boosted trees text mining association rules model comparison With today’s emphasis on business intelligence, business analytics, and predictive analytics, this second edition is invaluable to anyone who needs to expand his or her knowledge of statistics and to apply real-world, problem-solving analysis. This book is part of the SAS Press program.

Expert Apache Cassandra Administration

Follow this handbook to build, configure, tune, and secure Apache Cassandra databases. Start with the installation of Cassandra and move on to the creation of a single instance, and then a cluster of Cassandra databases. Cassandra is increasingly a key player in many big data environments, and this book shows you how to use Cassandra with Apache Spark, a popular big data processing framework. Also covered are day-to-day topics of importance such as the backup and recovery of Cassandra databases, using the right compression and compaction strategies, and loading and unloading data. Expert Apache Cassandra Administration provides numerous step-by-step examples starting with the basics of a Cassandra database, and going all the way through backup and recovery, performance optimization, and monitoring and securing the data. The book serves as an authoritative and comprehensive guide to the building and management of simpleto complex Cassandra databases. The book: Takes you through building a Cassandra database from installation of the software and creation of a single database, through to complex clusters and data centers Provides numerous examples of actual commands in a real-life Cassandra environment that show how to confidently configure, manage, troubleshoot, and tune Cassandra databases Shows how to use the Cassandra configuration properties to build a highly stable, available, and secure Cassandra database that always operates at peak efficiency What You'll Learn Install the Cassandra software and create your first database Understand the Cassandra data model, and the internal architecture of a Cassandra database Create your own Cassandra cluster, step-by-step Run a Cassandra cluster on Docker Work with Apache Spark by connecting to a Cassandra database Deploy Cassandra clusters in your data center, or on Amazon EC2 instances Back up and restore mission-critical Cassandra databases Monitor, troubleshoot, and tune production Cassandra databases, and cut your spending on resources such as memory, servers, and storage Who This Book Is For Database administrators, developers, and architects who are looking for an authoritative and comprehensive single volume for all their Cassandra administration needs. Also for administrators who are tasked with setting up and maintaining highly reliable and high-performing Cassandra databases. An excellent choice for big data administrators, database administrators, architects, and developers who use Cassandra as their key data store, to support high volume online transactions, or as a decentralized, elastic data store.

IBM TS4500 R4 Tape Library Guide

Abstract The IBM® TS4500 (TS4500) tape library is a next-generation tape solution that offers higher storage density and integrated management than previous solutions. This IBM Redbooks® publication gives you a close-up view of the new IBM TS4500 tape library. In the TS4500, IBM delivers the density that today's and tomorrow's data growth requires. It has the cost-effectiveness and the manageability to grow with business data needs, while you preserve existing investments in IBM tape library products. Now, you can achieve both a low cost per terabyte (TB) and a high TB density per square foot, because the TS4500 can store up to 8.25 petabytes (PB) of uncompressed data in a single frame library or scale up at 1.5 PB per square foot to over 263 PB, which is more than 4 times the capacity of the IBM TS3500 tape library. The TS4500 offers these benefits: High availability dual active accessors with integrated service bays to reduce inactive service space by 40%. The Elastic Capacity option can be used to completely eliminate inactive service space. Flexibility to grow: The TS4500 library can grow from both the right side and the left side of the first L frame because models can be placed in any active position. Increased capacity: The TS4500 can grow from a single L frame up to an additional 17 expansion frames with a capacity of over 23,000 cartridges. High-density (HD) generation 1 frames from the existing TS3500 library can be redeployed in a TS4500. Capacity on demand (CoD): CoD is supported through entry-level, intermediate, and base-capacity configurations. Advanced Library Management System (ALMS): ALMS supports dynamic storage management, which enables users to create and change logical libraries and configure any drive for any logical library. Support for the IBM TS1155 while also supporting TS1150 and TS1140 tape drive: The TS1155 gives organizations an easy way to deliver fast access to data, improve security, and provide long-term retention, all at a lower cost than disk solutions. The TS1155 offers high-performance, flexible data storage with support for data encryption. Also, this enhanced fifth-generation drive can help protect investments in tape automation by offering compatibility with existing automation. The new TS1155 Tape Drive Model 55E delivers a 10 Gb Ethernet host attachment interface optimized for cloud-based and hyperscale environments. The TS1155 Tape Drive Model 55F delivers a native data rate of 360 MBps, the same load/ready, locate speeds, and access times as the TS1150, and includes dual-port 8 Gb Fibre Channel support. Support of the IBM Linear Tape-Open (LTO) Ultrium 7 tape drive: The LTO Ultrium 7 offering represents significant improvements in capacity, performance, and reliability over the previous generation, LTO Ultrium 6, while they still protect your investment in the previous technology. Integrated TS7700 back-end Fibre Channel (FC) switches are available. Up to four library-managed encryption (LME) key paths per logical library are available. This book describes the TS4500 components, feature codes, specifications, supported tape drives, encryption, new integrated management console (IMC), and command-line interface (CLI). You learn how to accomplish several specific tasks: Improve storage density with increased expansion frame capacity up to 2.4 times and support 33% more tape drives per frame. Manage storage by using the ALMS feature. Improve business continuity and disaster recovery with dual active accessor, automatic control path failover, and data path failover. Help ensure security and regulatory compliance with tape-drive encryption and Write Once Read Many (WORM) media. Support IBM LTO Ultrium 7, 6, and 5, IBM TS1155, TS1150, and TS1140 tape drives. Provide a flexible upgrade path for users who want to expand their tape storage as their needs grow. Reduce the storage footprint and simplify cabling with 10 U of rack space on top of the library. This guide is for anyone who wants to understand more about the IBM TS4500 tape library. It is particularly suitable for IBM clients, IBM Business Partners, IBM specialist sales representatives, and technical specialists.

Summary

Building a data pipeline that is reliable and flexible is a difficult task, especially when you have a small team. Astronomer is a platform that lets you skip straight to processing your valuable business data. Ry Walker, the CEO of Astronomer, explains how the company got started, how the platform works, and their commitment to open source.

Preamble

Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at www.dataengineeringpodcast.com/linode?utm_source=rss&utm_medium=rss and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show. Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch. You can help support the show by checking out the Patreon page which is linked from the site. To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers This is your host Tobias Macey and today I’m interviewing Ry Walker, CEO of Astronomer, the platform for data engineering.

Interview

Introduction How did you first get involved in the area of data management? What is Astronomer and how did it get started? Regulatory challenges of processing other people’s data What does your data pipelining architecture look like? What are the most challenging aspects of building a general purpose data management environment? What are some of the most significant sources of technical debt in your platform? Can you share some of the failures that you have encountered while architecting or building your platform and company and how you overcame them? There are certain areas of the overall data engineering workflow that are well defined and have numerous tools to choose from. What are some of the unsolved problems in data management? What are some of the most interesting or unexpected uses of your platform that you are aware of?

Contact Information

Email @rywalker on Twitter

Links

Astronomer Kiss Metrics Segment Marketing tools chart Clickstream HIPAA FERPA PCI Mesos Mesos DC/OS Airflow SSIS Marathon Prometheus Grafana Terraform Kafka Spark ELK Stack React GraphQL PostGreSQL MongoDB Ceph Druid Aries Vault Adapter Pattern Docker Kinesis API Gateway Kong AWS Lambda Flink Redshift NOAA Informatica SnapLogic Meteor

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA Support Data Engineering Podcast

Learning Elasticsearch

This comprehensive guide to Elasticsearch will teach you how to build robust and scalable search and analytics applications using Elasticsearch 5.x. You will learn the fundamentals of Elasticsearch, including its APIs and tools, and how to apply them to real-world problems. By the end of the book, you will have a solid grasp of Elasticsearch and be ready to implement your own solutions. What this Book will help me do Master the setup and configuration of Elasticsearch and Kibana. Learn to efficiently query and analyze both structured and unstructured data. Understand how to use Elasticsearch aggregations to perform advanced analytics. Gain knowledge of advanced search features including geospatial queries and autocomplete. Explore the Elastic Stack and learn deployment best practices and cloud hosting options. Author(s) None Andhavarapu is an expert in database technology and distributed systems, with years of experience in Elasticsearch. Their passion for search technologies is reflected in their clear and practical teaching style. They've written this guide to help developers of all levels get up to speed with Elasticsearch quickly and comprehensively. Who is it for? This book is perfect for software developers looking to implement effective search and analytics solutions. It's ideal for those who are new to Elasticsearch as well as for professionals familiar with other search tools like Lucene or Solr. The book assumes basic programming knowledge but no prior experience with Elasticsearch.

R for Everyone: Advanced Analytics and Graphics, 2nd Edition

Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. is the solution. R for Everyone, Second Edition, Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you'll need to accomplish 80 percent of modern data tasks. Lander's self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You'll download and install R; navigate and use the R environment; master basic program control, data import, manipulation, and visualization; and walk through several essential tests. Then, building on this foundation, you'll construct several complete models, both linear and nonlinear, and use some data mining techniques. After all this you'll make your code reproducible with LaTeX, RMarkdown, and Shiny. By the time you're done, you won't just know how to write R programs, you'll be ready to tackle the statistical problems you care about most. Coverage includes Explore R, RStudio, and R packages Use R for math: variable types, vectors, calling functions, and more Exploit data structures, including data.frames, matrices, and lists Read many different types of data Create attractive, intuitive statistical graphics Write user-defined functions Control program flow with if, ifelse, and complex checks Improve program efficiency with group manipulations Combine and reshape multiple datasets Manipulate strings using R's facilities and regular expressions Create normal, binomial, and Poisson probability distributions Build linear, generalized linear, and nonlinear models Program basic statistics: mean, standard deviation, and t-tests Train machine learning models Assess the quality of models and variable selection Prevent overfitting and perform variable selection, using the Elastic Net and Bayesian methods Analyze univariate and multivariate time series data Group data via K-means and hierarchical clustering Prepare reports, slideshows, and web pages with knitr Display interactive data with RMarkdown and htmlwidgets Implement dashboards with Shiny Build reusable R packages with devtools and Rcpp